资源描述:
《定积分的概念(4)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、章节名称5-1定积分的概念授课方式讲授法授课时数4授课方法和手段启发法和师生互动法教学目的及要求教学目的;.理解定积分的概念,意义;学会、掌握微元法处理问题的基本思想熟记平面图形面积的计算公式。教学要求;.理解定积分的概念,几何意义;熟记平面图形面积的计算公式教学基本内容纲要一、定积分问题举例1.曲边梯形的面积曲边梯形:设函数y=f(x)在区间[a,b]上非负、连续.由直线x=a、x=b、y=0及曲线y=f(x)所围成的图形称为曲边梯形,其中曲线弧称为曲边.求曲边梯形的面积的近似值:将曲边梯形分割成一些小的曲边梯形,每个小曲边梯形都用一个等宽的小矩形代替,每个小曲边梯形
2、的面积都近似地等于小矩形的面积,则所有小矩形面积的和就是曲边梯形面积的近似值.具体方法是:在区间[a,b]中任意插入若干个分点a=x03、,把这样得到的n个窄矩阵形面积之和作为所求曲边梯形面积A的近似值,即A»f(x1)Dx1+f(x2)Dx2+×××+f(xn)Dxn.求曲边梯形的面积的精确值:5教学基本内容纲要显然,分点越多、每个小曲边梯形越窄,所求得的曲边梯形面积A的近似值就越接近曲边梯形面积A的精确值,因此,要求曲边梯形面积A的精确值,只需无限地增加分点,使每个小曲边梯形的宽度趋于零.记l=max{Dx1,Dx2,×××,Dxn},于是,上述增加分点,使每个小曲边梯形的宽度趋于零,相当于令l®0.所以曲边梯形的面积为2.变速直线运动的路程设物体作直线运动,已知速度v=v(t)是时间间隔[T1,T2
4、]上t的连续函数,且v(t)³0,计算在这段时间内物体所经过的路程S.求近似路程:我们把时间间隔[T1,T2]分成n个小的时间间隔Dti,在每个小的时间间隔Dti内,物体运动看成是均速的,其速度近似为物体在时间间隔Dti内某点xi的速度v(ti),物体在时间间隔Dti内运动的距离近似为DSi=v(ti)Dti.把物体在每一小的时间间隔Dti内运动的距离加起来作为物体在时间间隔[T1,T2]内所经过的路程S的近似值.具体做法是:在时间间隔[T1,T2]内任意插入若干个分点T1=t05、1,t2],×××,[tn-1,tn],各小段时间的长依次为Dt1=t1-t0,Dt2=t2-t1,×××,Dtn=tn-tn-1.相应地,在各段时间内物体经过的路程依次为DS1,DS2,×××,DSn.在时间间隔[ti-1,ti]上任取一个时刻ti(ti-16、的极限,即得变速直线运动的路程.设函数y=f(x)在区间[a,b]上非负、连续.求直线x=a、x=b、y=0及曲线y=f(x)所围成的曲边梯形的面积.(1)用分点a=x07、的精确值为5教学基本内容纲要二、定积分定义抛开上述问题的具体意义,抓住它们在数量关系上共同的本质与特性加以概括,就抽象出下述定积分的定义.定义设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点a=x0