2014高考数学总复习 第2章 第11讲 导数的应用(一)配套练习 理 新人教a版

2014高考数学总复习 第2章 第11讲 导数的应用(一)配套练习 理 新人教a版

ID:29701402

大小:82.50 KB

页数:5页

时间:2018-12-22

2014高考数学总复习 第2章 第11讲 导数的应用(一)配套练习 理 新人教a版_第1页
2014高考数学总复习 第2章 第11讲 导数的应用(一)配套练习 理 新人教a版_第2页
2014高考数学总复习 第2章 第11讲 导数的应用(一)配套练习 理 新人教a版_第3页
2014高考数学总复习 第2章 第11讲 导数的应用(一)配套练习 理 新人教a版_第4页
2014高考数学总复习 第2章 第11讲 导数的应用(一)配套练习 理 新人教a版_第5页
资源描述:

《2014高考数学总复习 第2章 第11讲 导数的应用(一)配套练习 理 新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二章第11讲(时间:45分钟 分值:100分)一、选择题1.[2013·鸡西模拟]函数f(x)=(x-3)ex的单调递增区间是(  )A.(-∞,2)       B.(0,3)C.(1,4)   D.(2,+∞)答案:D解析:由题意知,f′(x)=ex+(x-3)ex=(x-2)ex.由f′(x)>0得x>2.故选D.2.[2012·陕西高考]设函数f(x)=+lnx,则(  )A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点答案:D解析:f′(x)=-+=,∵x>0,∴当x>2时,f′(x)>0,f(x)是增函数;当

2、01,则函数f(x)=x3-ax2+1在(0,2)内零点的个数为(  )A.3   B.2C.1   D.0答案:C解析:f′(x)=x2-2ax,由a>1可知,f′(x)在x∈(0,2)时恒为负,即f(x)在(0,2)内单调递减,又f(0)=1>0,f(2)=-4a+1<0,所以f(x)在(0,2)内只有一个零点.故选C.4.[2013·济南名校模考]设a∈R,若函数y=ex+ax有大于零的极值点,则(  )A.a<-1   B.a>-1C.a<-   D.a>-答案:A解析:由题

3、知y′=ex+a=0有大于0的实根,即x=ln(-a)>0⇒-a>1⇒a<-1.5.已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述正确的是(  )A.f(b)>f(c)>f(d)B.f(b)>f(a)>f(e)C.f(c)>f(b)>f(a)D.f(c)>f(e)>f(d)答案:C解析:依题意得,当x∈(-∞,c)时,f′(x)>0;当x∈(c,e)时,f′(x)<0;当x∈(e,+∞)时,f′(x)>0.因此,函数f(x)在(-∞,c)上是增函数,在(c,e)上是减函数,在(e,+∞)上是增函数,又af(b)>f(a),选C.6.[

4、2013·石家庄质检]设函数f(x)=x2-9lnx在区间[a-1,a+1]上单调递减,则实数a的取值范围是(  )A.10),当x-≤0时,有00,a+1≤3,解得1

5、_______.(填序号)答案:②③解析:由导函数图象可知f(x)在[-2,-1]上递减,在[-1,2]上递增,在[2,4]上递减,x=-1为极小值点,x=3不是极值点,故②③正确.8.[2013·天津模拟]函数f(x)=x3+3ax2+3[(a+2)x+1]有极大值又有极小值,则a的取值范围是________.答案:a>2或a<-1解析:f′(x)=3x2+6ax+3(a+2),令3x2+6ax+3(a+2)=0,即x2+2ax+a+2=0.因为函数f(x)有极大值又有极小值,所以方程x2+2ax+a+2=0有两个不相等的实根,即Δ=4a2-4a-8>0,解得a>2或a<-1.9.[20

6、13·无锡模拟]已知函数y=-x3+bx2-(2b+3)x+2-b在R上不是单调减函数,则b的取值范围是________.答案:b<-1或b>3解析:y′=-x2+2bx-(2b+3),要使原函数在R上单调递减,应有y′≤0恒成立,∴Δ=4b2-4(2b+3)=4(b2-2b-3)≤0,∴-1≤b≤3,故使该函数在R上不是单调减函数的b的取值范围是b<-1或b>3.三、解答题10.[2013·温州质检]设f(x)=,其中a为正实数.(1)当a=时,求f(x)的极值点;(2)若f(x)为R上的单调函数,求a的取值范围.解:对f(x)求导得f′(x)=ex.①(1)当a=时,若f′(x)=0,

7、则4x2-8x+3=0,解得x1=,x2=.结合①,可知x(-∞,)(,)(,+∞)f′(x)+0-0+f(x)↗极大值↘极小值↗所以x1=是极小值点,x2=是极大值点.(2)若f(x)为R上的单调函数,则f′(x)在R上不变号,结合①与条件a>0,知1+ax2-2ax≥0在R上恒成立,即Δ=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0

8、0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。