直线与园、圆与圆地位置关系的知识点及习的题目

直线与园、圆与圆地位置关系的知识点及习的题目

ID:29666983

大小:1011.00 KB

页数:13页

时间:2018-12-22

直线与园、圆与圆地位置关系的知识点及习的题目_第1页
直线与园、圆与圆地位置关系的知识点及习的题目_第2页
直线与园、圆与圆地位置关系的知识点及习的题目_第3页
直线与园、圆与圆地位置关系的知识点及习的题目_第4页
直线与园、圆与圆地位置关系的知识点及习的题目_第5页
资源描述:

《直线与园、圆与圆地位置关系的知识点及习的题目》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文案直线与圆、圆与圆的位置关系一、直线与圆的位置关系1、直线与圆相离无交点;2、直线与圆相切有一个交点(切点);3、直线与圆相交有两个交点;二、切线的判定定理与性质(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵且过半径外端∴是⊙的切线(2)性质定理:经过切点的半径垂直于圆的切线经过切点垂直于切线的直线必经过圆心(如上图)①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。例1、在中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离?

2、解题思路:作AD⊥BC于D在中,∠B=30°  ∴在中,∠C=45°∴CD=AD  ∵BC=6cm  ∴∴精彩文档实用标准文案∴当时,⊙A与BC相切;当时,⊙A与BC相交;当时,⊙A与BC相离。例2.如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)CD与⊙O相切吗?如果相切,请你加以证明,如果不相切,请说明理由.(2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径.解题思路:(1)要说明CD是否是⊙O的切线,只要说明OC是否垂直于CD,垂足为C,因为C点已在圆上.由已知易得:∠A=30°,又由∠DCB=∠A=30°得:BC=BD=1

3、0解:(1)CD与⊙O相切理由:①C点在⊙O上(已知)②∵AB是直径∴∠ACB=90°,即∠ACO+∠OCB=90°∵∠A=∠OCA且∠DCB=∠A∴∠OCA=∠DCB∴∠OCD=90°综上:CD是⊙O的切线.(2)在Rt△OCD中,∠D=30°∴∠COD=60°∴∠A=30°∴∠BCD=30°∴BC=BD=10∴AB=20,∴r=10答:(1)CD是⊙O的切线,(2)⊙O的半径是10.三、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:∵、是的两条切线∴平分(证明)四、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘

4、积相等。精彩文档实用标准文案即:在⊙中,∵弦、相交于点,∴(相似)(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在⊙中,∵直径,∴(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在⊙中,∵是切线,是割线∴(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在⊙中,∵、是割线∴五、三角形的内切圆(1)定义:与三角形三边都相切的圆(角平分线的交点)(2)内心、外切三角形例1:如图,⊙O为△ABC的内切圆,∠C=,AO的延长线交BC于点D,AC

5、=4,DC=1,,则⊙O的半径等于 (  )1、如图,∠ABC=90°,O为射线BC上一点,以点O为圆心、BO长为半径作⊙O,当射线BA绕点B按顺时针方向旋转度时与⊙0相切.六、圆与圆的位置关系外离(图1)无交点;外切(图2)有一个交点;精彩文档实用标准文案相交(图3)有两个交点;内切(图4)有一个交点;内含(图5)无交点;例1.两个同样大小的肥皂泡黏在一起,其剖面如图1所示(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.(1)(2)解题思路:要求∠TPN,其实就是求∠OPO′的角度,很明显,∠POO′是正三角形,如图2所

6、示.解:∵PO=OO′=PO′∴△PO′O是一个等边三角形∴∠OPO′=60°又∵TP与NP分别为两圆的切线,∴∠TPO=90°,∠NPO′=90°∴∠TPN=360°-2×90°-60°=120°例2.如图1所示,⊙O的半径为7cm,点A为⊙O外一点,OA=15cm,求:(1)作⊙A与⊙O外切,并求⊙A的半径是多少?精彩文档实用标准文案(1)(2)(2)作⊙A与⊙O相内切,并求出此时⊙A的半径.解题思路:(1)作⊙A和⊙O外切,就是作以A为圆心的圆与⊙O的圆心距d=rO+rA;(2)作OA与⊙O相内切,就是作以A为圆心的圆与⊙O的圆心距d=rA-rO.解:如图2所示,(1)作法

7、:以A为圆心,rA=15-7=8为半径作圆,则⊙A的半径为8cm(2)作法:以A点为圆心,rA′=15+7=22为半径作圆,则⊙A的半径为22cm例3.如图所示,点A坐标为(0,3),OA半径为1,点B在x轴上.(1)若点B坐标为(4,0),⊙B半径为3,试判断⊙A与⊙B位置关系;_A_y_x_O(2)若⊙B过M(-2,0)且与⊙A相切,求B点坐标.答(1)AB=5>1+3,外离.(2)设B(x,0)x≠-2,则AB=,⊙B半径为│x+2│,①设⊙B与⊙A外切,则=│x+2│+1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。