浅谈定积分地的应用

浅谈定积分地的应用

ID:29654312

大小:453.00 KB

页数:11页

时间:2018-12-21

浅谈定积分地的应用_第1页
浅谈定积分地的应用_第2页
浅谈定积分地的应用_第3页
浅谈定积分地的应用_第4页
浅谈定积分地的应用_第5页
资源描述:

《浅谈定积分地的应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文案浅谈定积分的应用********(天津商业大学经济学院,中国天津300134)摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。关键词定积分定积分的应用求旋转体体积变力做功TheApplicationofDefiniteIntegral********(TianjinUniversityofCommerce,Tianjin,300134,China)Abstra

2、ct:Definite integral in our daily life and learning have a lot of use, this paper expounds the definition of definite integral and geometric meaning, and through the example analysis of the definite integral in the higher mathematics, physics, economics, and other fields of 

3、application condition and its applications, through the analysis can be seen that the use of definite integral to solve some practical problems is very convenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolut

4、ion, volume change forces work 0、前言众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中

5、有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5]。本文将举例介绍定积分在的我们日常学习和生活当中的应用。1定积分的基本定理和几何意义1.1、定积分的定义定积分就是求函数在区间中图线下包围的面积。即由,,,所围成图形的面积。定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由

6、于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:如果是上的连续函数,并且有,那么精彩文档实用标准文案用文字表述为:一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。1.2、定积分的几何意义当时,是曲边梯形的面积如图1a所示;当时,是曲边梯形的面积的负值1b所示;(a)(b)图1定积分的几何意义图示2定积分的应用1,解决求曲边图形的面积问题例:求由抛物线

7、与直线围成的平面图形D的面积S。2,求变速直线运动的路程做变速直线运动的物体经过的路程s,等于其速度函数,在时间区间上的定积分。3,变力做功某物体在变力的作用下,在位移区间上做的功等于在上的定积分。3定积分的应用举例3.1、平面图形的面积3.1.1、直角坐标系下平面图形的面积(1)X-型与Y-型平面图形的面积精彩文档实用标准文案把由直线,,及两条连续曲线,,所围成的平面图形称为X-型图形如图2a;把由直线,及两条连续曲线x=g1(y),x=g2(y)(g1(y)£g2(y))所围成的平面图形称为Y-型图形。如图2b(a)X-型图形(b)Y-型图

8、形图2平面图形的面积注意:构成图形的两条直线,有时也可能蜕化为点。把X-型图形称为X-型双曲边梯形,把Y-型图形称为Y-型双曲边梯形。1)用微元法分析

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。