《线性与非线性》word版

《线性与非线性》word版

ID:29637899

大小:59.51 KB

页数:12页

时间:2018-12-21

《线性与非线性》word版_第1页
《线性与非线性》word版_第2页
《线性与非线性》word版_第3页
《线性与非线性》word版_第4页
《线性与非线性》word版_第5页
资源描述:

《《线性与非线性》word版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、线性规划与非线性规划线性linear,指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;非线性non-linear则指不按比例、不成直线的关系,一阶导数不为常数。如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是6-10倍!这就是非线性。激光也是非线性的!天体运动存在混沌;电、光与声波的振荡,会突陷混沌;地磁场在400万年间,方向突变16次,也是由于混沌。甚至人类自己,原来都是非线性的:与传统的想法相反,健康人的脑电图和心脏跳动并不是规则的,而是混沌的,混沌正是生命力的表现,混沌系统对外界的刺激反应,比非混沌系统快。 非线性规划  no

2、nlinearprogramming  具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个12n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是线性函数的情形则属于线性规划。简史  非线性规划是20世纪50年代才开始形成的一门新兴学科。1951年H.W.库恩和A.W.塔克发表的关于最优性条件(后来称为库恩-塔克条件)的论文是非线性规划正式诞生的一个重要标志。在50年代还得出了可分离规划和二次规划的n种解法,它们大都是以G.B.丹齐克提出的解线性规划的单纯形法为基础的。50

3、年代末到60年代末出现了许多解非线性规划问题的有效的算法,70年代又得到进一步的发展。非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。实例  下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。  例112(投资决策问题)某企业有n个项目可供选择投资,并且至少要对其中一个项目投资。已知该企业拥有总资金A元,投资于第i个项目需花资金ai元,并预计可收益bi元。试选择最佳投资方案。  解设投资决策变量为      则投资总额为∑aixi,投资总收益为∑bixi。因为该公司至少要对一个项目投资,并且总的投资金额不能超

4、过总资金,故有限制条件      另外,由于xi只取值0或1,所以还有      最佳投资方案应是投资额最小而总收益最大的方案,所以这个最佳投资决策问题归结为总资金以及决策变量(取0或1)的限制条件下,极大化总收益和总投资之比。因此,其数学模型为:    12  上面例题是在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中目标函数或约束条件中至少有一个非线性函数,这类问题称之为非线性规划问题,简记为(NP)。可概括为一般形式        (NP)  其中x=[x1...xn]称为模型(NP)的决策变量,f称为目标函数,gi和hj称为约束函数。另外,gi(x)

5、=0称为等式约束,hj(x)<=0称为不等式约束。常见问题  对于一个实际问题,在把它归结成非线性规划问题时,一般要注意如下几点:  (i)确定供选方案:首先要收集同问题有关的资料和数据,在全面熟悉问题的基础上,确认什么是问题的可供选择的方案,并用一组变量来表示它们。12  (ii)提出追求目标:经过资料分析,根据实际需要和可能,提出要追求极小化或极大化的目标。并且,运用各种科学和技术原理,把它表示成数学关系式。  (iii)给出价值标准:在提出要追求的目标之后,要确立所考虑目标的“好”或“坏”的价值标准,并用某种数量形式来描述它。  (iv)寻求限制条件:由于所追求的目标一般

6、都要在一定的条件下取得极小化或极大化效果,因此还需要寻找出问题的所有限制条件,这些条件通常用变量之间的一些不等式或等式来表示。数学模型  对实际规划问题作定量分析,必须建立数学模型。建立数学模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,称之为目标函数。然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,称之为约束条件。非线性规划问题的一般数学模型可表述为求未知量x1,x2,…,xn,使满足约束条件:  gi(x1,…,xn)≥0 i=1,…,m  hj(x1,…,xn)=0 j=1,…,p  并使目标函数f(x1,…12,xn)

7、达到最小值(或最大值)。其中f,诸gi和诸hj都是定义在n维向量空间Rn的某子集D(定义域)上的实值函数,且至少有一个是非线性函数。  上述模型可简记为:  minf(x)  s.t.gi(x)≥0 i=1,…,m  hj(x)=0j=1,…,p  其中x=(x1,…,xn)属于定义域D,符号min表示“求最小值”,符号s.t.表示“受约束于”。  定义域D中满足约束条件的点称为问题的可行解。全体可行解所成的集合称为问题的可行集。对于一个可行解x*,如果存在x*的一个邻域,使目标函数在x*处

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。