6、的图象关于直线x=1对称,则a=( A )A.3 B.2 C.1 D.-1解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0),即3+
7、2-a
8、=1+
9、a
10、,排除D项,C项,又f(-1)=f(3),即
11、a+1
12、=4+
13、3-a
14、,用代入法知选A.4.(2018·四川成都模拟)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( D )A.(-
15、1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)解析 f(x)为奇函数,所以不等式<0化为<0,即xf(x)<0,则f(x)的大致图象如图所示,所以xf(x)<0的解集为(-1,0)∪(0,1).5.(2018·河南统考)若函数y=f(2x+1)是偶函数,则函数y=f(2x)的图象的对称轴方程是( C )A.x=-1 B.x=-C.x= D.x=1解析 ∵f(2x+1)是偶函数,其图象关于y轴对称,而f(2x+1)=f,∴f(2x)的图象可由f(2x+1)的图象向右平移个单位得到
16、,即f(2x)的图象的对称轴方程是x=.6.(2018·广东名校模拟)已知函数f(x)=4-x2,函数g(x)(x∈R且x≠0)是奇函数,当x>0时,g(x)=log2x,则函数f(x)·g(x)的大致图象为( D )解析 易证函数f(x)=4-x2为偶函数,又g(x)是奇函数,所以函数f(x)·g(x)为奇函数,其图象关于原点对称,排除A项、B项.当x>0时,f(x)·g(x)=(4-x2)log2x有两个零点1,2,且0