八年级数学下册 勾股定理教案 新人教版

八年级数学下册 勾股定理教案 新人教版

ID:29608968

大小:267.06 KB

页数:8页

时间:2018-12-21

八年级数学下册 勾股定理教案 新人教版_第1页
八年级数学下册 勾股定理教案 新人教版_第2页
八年级数学下册 勾股定理教案 新人教版_第3页
八年级数学下册 勾股定理教案 新人教版_第4页
八年级数学下册 勾股定理教案 新人教版_第5页
资源描述:

《八年级数学下册 勾股定理教案 新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、勾股定理教学任务教学目标知识与技能目标理解并掌握勾股定理及其证明.过程与方法目标在学生经历“观察—猜想—归纳—验证”勾股定理的过程中,发展合情推理能力,体会数形结合和从特殊到一般的思想.情感与态度目标通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,培养学生的合作交流意识和探索精神.重点探索和证明勾股定理.难点用拼图方法证明勾股定理.教学准备教具多媒体课件.学具剪刀和边长分别为a、b的两个连体正方形纸片.教学流程安排活动流程图活动内容和目的活动1创设情境→激发兴趣通过对赵爽弦图的了解,激发起学生对勾股定理的探索兴趣.活动2观察特例→发现新知通过问题激发学生好

2、奇、探究和主动学习的欲望.活动3深入探究→交流归纳观察分析方格图,得出直角三角形的性质——勾股定理,发展学生分析问题的能力.活动4拼图验证→加深理解通过剪拼赵爽弦图证明勾股定理,体会数形结合思想,激发探索精神.活动5实践应用→拓展提高初步应用所学知识,加深理解.活动6回顾小结→整体感知回顾、反思、交流.活动7布置作业→巩固加深巩固、发展提高.教学过程设计问题与情境师生行为设计意图活动1创设情境→激发兴趣2002年在北京召开的第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会会徽的图案.它象一个转动的风车,挥舞着手臂,欢迎来自

3、世界各国的数学家们.(1)你见过这个图案吗?会徽(2)你听说过“勾股定理”吗?教师出示照片及图片.学生观察图片发表见解.教师作补充说明:这个图案是我国汉代数学家赵爽用来证明勾股定理的“赵爽弦图”加工而来,展现了我国古代对勾股定理的研究成果,是我国古代数学的骄傲.教师应重点关注:(1)学生对“赵爽弦图”及勾股定理的历史是否感兴趣;(2)学生对勾股定理的了解程度.通过欣赏图片,了解历史,介绍与勾股定理有关的背景知识,激发学生学习兴趣,自然引出本节课的课题.活动2观察特例→发现新知毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映

4、了直角三角形的三边的某种数量关系.(1)同学们,请你也来观察下图中的地面,看看能发现些什么?教师展示图片,提出问题.学生独立观察图形,分析思考其中隐藏的规律.学生通过直接数等腰直角三角形的个数,或者用割补的方法将正方形A、B中小等腰直角三角形补成一个大正方形得到:正方形A、B的面积之和等于大正方形C的面积.通过讲传说故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态.“问题是思维的起点”,通过层层设问,地面图18.1-1(2)你能找出图18.1-1中正方形A、B、C面积之间的关系吗?(3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系?教师引导学

5、生,由正方形的面积等于边长的平方归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方.引导学生发现新知.活动3深入探究→交流归纳(1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?图18.1-2如图18.1-2,每个小方格的面积均为1,以格点为顶点,有一个直角边分别是2、3的直角三角形.仿照上一活动,我们以这个直角三角形的三边为边长向外作正方形.(2)想一想,怎样利用小方格计算正方形A、B、C面积?教师出示图表.学生独立观察并计算各图中正方形A、B、C的面积并完成填表.教师参与小组活动,指导、倾听学生交流.针对不同认识水平

6、的学生,引导其用不同的方法得出大正方形的面积.学生分组交流,展示求面积的不同方法,如:在正方形C周围补出四个全等的直角三角形而得到一个大正方形,通过图形面积的和差,得到正方形C的面积.或者,将正方形C分割成四个全等的直角三角形和一个小正方形,求得正方形C面积.学生利用表格有条理地呈现数据,归纳得到:正方形A、B的面积之和等于正方形C的面积.在上一活动“探究等腰直角三角形三边关系”的基础上,学生类比迁移,得到:两直角边的平方和等于斜边的平方.师生共同讨论、交流、逐步完善,得到命题1:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2.教师应重点关注:渗透从

7、特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高.(3)正方形A、B、C面积之间的关系是什么?(4)直角三角形三边之间的关系用命题形式怎样表述?学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.活动4拼图验证→加深理解(弦图验证)(1)观察赵爽弦图,思考:如何利用此图的面积表示式验证命题1?赵爽弦图(拼图验证)(2)仿照课本中赵爽的思路,只剪两刀,将

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。