欢迎来到天天文库
浏览记录
ID:29523001
大小:64.06 KB
页数:4页
时间:2018-12-20
《八年级数学上册13.1命题定理与证明导学案2新版华东师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、13.1命题、定理、证明学习目标:(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.(3)理解什么是定理和证明知识回顾:1,平行线的判定和性质的区别是:2,请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)经过直线外一点有且只有一条直线与这条直线平行;(4)两点确定一条直线.(一)探究思考1、阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一
2、个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些句子都是对某一件事情作出“是”或“不是”的判断2、定义:的语句,叫做命题(二)命题的构成:1、许多命题都由和两部分组成.是已知事项,是由已知事项推出的事项.2、命题常写成"如果……那么……"的形式,这时,"如果"后接的部分是,"那么"后接的的部分是.(三)命题的分类真命题:。(定理:的真命题。)假命题:。(四)请同学们判断下列两个命题的真假,并思考如何判断命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.(1)命题1是真
3、命题还是假命题?(2)你能将命题1所叙述的内容用图形语言来表达吗?(3)这个命题的题设和结论分别是什么呢?(4)你能结合图形用几何语言表述命题的题设和结论吗?(5)请同学们思考如何利用已经学过的定义定理来证明这个结论呢?证明:直角三角形的两个锐角互余。B例1.已知:如图在Rt△ABC中,∠C=90°A求证:∠A+∠B=90°C2A例2.三角形的外角和等于360°已知:△ABC,1求证:∠1+∠2+∠3=360°BC3【练习】1、 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已
4、知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()2、下列语句是命题吗?如果是,请将它们改写成“如果……,那么……”的形式.(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补,两直线平行;(5)对顶角相等.(6)等角的补角相等;(7)平行四边形的对边相等(8)相等的角是对顶角(9)三角形的外角和是360°3、下列命题的真假性?请说出你的理由。(1)、相等的两角是对顶角。(2)、对顶角相等。(3)、内错角相等。(4)、正数与负数的和仍
5、是负数。(5)、一个数的平方必是正数。4、.在下面的括号里,填上推理的依据。如图,∠A+∠B=180°,求证∠C+∠D=180°.证明:∵∠A+∠B=180°,∴AD∥BC()∴∠C+∠D=180°()2、命题“同位角相等”是真命题吗?如果是,说出理由;如果不是,请举出反例。【小结】1.什么叫做命题?你能举出一些例子吗2.命题是由哪两部分组成的?3.举例说明什么是真命题,什么是假命题.4.如何判断一个命题的真假?5.谈谈你对证明的理解
此文档下载收益归作者所有