资源描述:
《2018版高中数学第二章统计2.1.2系统抽样学案新人教a版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.1.2 系统抽样[学习目标] 1.理解系统抽样的概念.2.会用系统抽样从总体中抽取样本.3.能用系统抽样解决实际问题.知识点一 系统抽样的概念在抽样中,当总体中个体数较大时,可将总体分为均衡的几个部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这样的抽样方法叫做系统抽样.系统抽样具有如下特点:项目特点个体数目总体中个体无较大差异且个体数目较大抽取方式总体分成均衡的若干部分,分段间隔相等,在第一段内用简单随机抽样确定起始编号,其余依次加上间隔的整数倍概率特征每个个体被抽到的可能性
2、相同,是等可能抽样知识点二 系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:(1)编号:先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)分段:确定分段间隔k,对编号进行分段.当(n是样本容量)是整数时,取k=;(3)确定第一个编号:在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)成样:按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进
3、行下去,直到获取整个样本.知识点三 系统抽样与简单随机抽样的区别与联系简单随机抽样系统抽样区别①操作简单易行;②抽样的结果与个体编号无关①当总体中的个体数较大时,用系统抽样更易实施,更节约成本;②系统抽样的效果与个体的编号有关,如果编号的特征随编号呈周期性变化,可能使样本的代表性很差联系系统抽样在总体中的个体均匀分段后,在第一段进行抽样时,采用的是简单随机抽样题型一 对系统抽样概念的理解例1 下列抽样中,最适宜用系统抽样的是( )A.某市的4个区共有2000名学生,且4个区的学生人数之比为3∶2∶8∶2
4、,从中抽取200名入样B.从某厂生产的2000个电子元件中随机抽取5个入样C.从某厂生产的2000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样答案 C解析 根据系统抽样的定义和特点判断,A项中的总体有明显的层次,不适宜用系统抽样;B项中样本容量很小,适合用随机数法;D项中总体容量很小,适合用抽签法.反思与感悟 系统抽样适用于个体数较大的总体,判断一种抽样是否为系统抽样,首先看在抽样前是否知道总体是由什么构成的.抽样的方法能否保证将总体分成几个均衡的部分,并保证每个个体等
5、可能入样.跟踪训练1 下列抽样方法不是系统抽样的是( )A.从标有1~15号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i0,以后选i0+5,i0+10(超过15则从1再数起)号入选B.工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C.做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈答案 C解析 A编号间隔相同,
6、B时间间隔相同,D相邻两排座位号的间隔相同,均满足系统抽样的特征.只有C项无明显的系统抽样的特征.题型二 系统抽样的应用例2 为了了解某地区今年高一学生期末考试数学学科的成绩,拟从参加考试的15000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.解 (1)对全体学生的数学成绩进行编号:1,2,3,…,15000.(2)分段:由于样本容量与总体容量的比是1∶100,所以我们将总体平均分为150个部分,其中每一部分包含100个个体.(3)在第一部分即1号到100号用简单随机抽样抽取一个号
7、码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14956,这样就得到一个容量为150的样本.反思与感悟 当总体容量能被样本容量整除时,分段间隔k=,样本编号相差k的整数倍;系统抽样过程中可能会与其他抽样方法结合使用,通常不单独运用.跟踪训练2 现有60瓶牛奶,编号为1至60,若从中抽取6瓶检验,用系统抽样方法确定所抽取的编号可能为( )A.3,13,23,33,43,53B.2,14,26,38,42,56C.5,8,31,36,48,54D.5,10,15,20,25
8、,30答案 A解析 因为60瓶牛奶分别编号为1至60,所以把它们依次分成6组,每组10瓶,要从中抽取6瓶检验,用系统抽样方法进行抽样.若在第一组抽取的编号为n(1≤n≤10),则所抽取的编号应为n,n+10,…,n+50.对照4个选项,只有A项符合系统抽样.系统抽样的显著特点之一就是“等距抽样”.因此,对于本题只要求出抽样的间隔k==10,就可判断结果.题型三 系统抽样的设计例3 某校高中二年级有253名学生,为了了解他们的视