2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版必修2

2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版必修2

ID:29520640

大小:159.06 KB

页数:7页

时间:2018-12-20

2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版必修2_第1页
2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版必修2_第2页
2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版必修2_第3页
2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版必修2_第4页
2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版必修2_第5页
资源描述:

《2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版必修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.6 点到直线的距离学习目标 1.了解点到直线距离公式的推导方法.2.掌握点到直线的距离公式,并能灵活应用于求平行线间的距离等问题.知识点一 点到直线的距离思考1 一般地,对于直线l:Ax+By+C=0(A≠0,B≠0)外一点P(x0,y0),点P到直线的距离为d,过点P分别作x轴和y轴的平行线,交直线l于R和S,则d同线段PS,PR,RS间存在什么关系? 思考2 根据思考1的思路,点P到直线Ax+By+C=0的距离d怎样用A,B,C及x0,y0表示? 思考3 点到直线的距离公式对于A=0或B

2、=0时的直线是否仍然适用?   梳理 (1)定义:点到直线的垂线段的长度.(2)图示:(3)公式:d=________________.知识点二 两条平行直线间的距离思考 直线l1:x+y-1=0上有A(1,0)、B(0,1)、C(-1,2)三点,直线l2:x+y+1=0与直线l1平行,那么点A、B、C到直线l2的距离分别为多少?有什么规律吗?  梳理 (1)定义:夹在两平行线间的公垂线段的长.(2)图示:(3)求法:转化为点到直线的距离.(4)公式:两条平行直线l1:Ax+By+C1=0与l2:A

3、x+By+C2=0之间的距离d=.类型一 点到直线的距离例1 (1)求点P(2,-3)到下列直线的距离.①y=x+;②3y=4;③x=3.   (2)求过点M(-1,2),且与点A(2,3),B(-4,5)距离相等的直线l的方程.  反思与感悟 (1)应用点到直线的距离公式时应注意的三个问题①直线方程应为一般式,若给出其他形式应化为一般式.②点P在直线l上时,点到直线的距离为0,公式仍然适用.③直线方程Ax+By+C=0,当A=0或B=0时公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数

4、形结合求解.(2)用待定系数法求直线方程时,首先考虑斜率不存在是否满足题意.跟踪训练1 (1)若点(4,a)到直线4x-3y=0的距离不大于3,则a的取值范围是________________;(2)已知直线l过点P(3,4)且与点A(-2,2),B(4,-2)等距离,则直线l的方程为_____________.类型二 两平行线间的距离例2 (1)若两直线3x+y-3=0和6x+my-1=0平行,则它们之间的距离为____________.(2)已知直线l与两直线l1:2x-y+3=0和l2:2x-

5、y-1=0的距离相等,则直线l的方程为________________.反思与感悟 求两平行线间的距离,一般是直接利用两平行线间的距离公式,当直线l1:y=kx+b1,l2:y=kx+b2,且b1≠b2时,d=;当直线l1:Ax+By+C1=0,l2:Ax+By+C2=0,且C1≠C2时,d=.但必须注意两直线方程中x,y的系数对应相等.跟踪训练2 (1)求与直线l:5x-12y+6=0平行且到l的距离为2的直线方程; (2)两平行直线l1,l2分别过P1(1,0),P2(0,5),若l1与l2的距

6、离为5,求两直线方程.     1.点P(-1,2)到直线3x-1=0的距离为________.2.若点(1,2)到直线x-y+a=0的距离为,则实数a的值为________.3.已知点P为x轴上一点,且点P到直线3x-4y+6=0的距离为6,则点P的坐标为____________.4.到直线3x-4y+1=0的距离为3,且与此直线平行的直线方程为________________.5.若点P到直线5x-12y+13=0和直线3x-4y+5=0的距离相等,则点P的坐标应满足的方程是__________

7、.1.点到直线的距离即是点与直线上点连线的距离的最小值,利用点到直线的距离公式,解题时要注意把直线方程化为一般式.当直线与坐标轴垂直时可直接求之.2.利用点到直线的距离公式可求直线的方程,有时需结合图形,数形结合,使问题更清晰.3.已知两平行直线,其距离可利用公式d=求解,也可在已知直线上取一点,转化为点到直线的距离.答案精析问题导学知识点一思考1 d=.思考2 d=.思考3 仍然适用,①当A=0,B≠0时,直线l的方程为By+C=0,即y=-,d=

8、y0+

9、=,适合公式.②当B=0,A≠0时,直线

10、l的方程为Ax+C=0,x=-,d=

11、x0+

12、=,适合公式.梳理 (3)知识点二思考 点A、B、C到直线l2的距离分别为、、.规律是当两直线平行时,一条直线上任一点到另一条直线的距离都相等.题型探究例1 (1)①y=x+可化为4x-3y+1=0,点P(2,-3)到该直线的距离为=.②3y=4可化为3y-4=0,由点到直线的距离公式得=.③x=3可化为x-3=0,由点到直线的距离公式得=1.(2)解 当过点M(-1,2)的直线l的斜率不存在时,直线l的方程为x=-1,恰

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。