欢迎来到天天文库
浏览记录
ID:29368128
大小:149.00 KB
页数:3页
时间:2018-12-19
《高中数学 3.2二维形式的柯西不等式(二)教案 新人教a版选修4-5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:第02课时二维形式的柯西不等式(二)教学目标:会利用二维柯西不等式及三角不等式解决问题,体会运用经典不等式的一般方法——发现具体问题与经典不等式之间的关系,经过适当变形,依据经典不等式得到不等关系.教学重点:利用二维柯西不等式解决问题.教学难点:如何变形,套用已知不等式的形式.教学过程:一、复习引入:1.提问:二维形式的柯西不等式、三角不等式?几何意义?答案:;2.讨论:如何将二维形式的柯西不等式、三角不等式,拓广到三维、四维?3.如何利用二维柯西不等式求函数的最大值?要点:利用变式.二、讲授新课:1.最大
2、(小)值:①出示例1:求函数的最大值?分析:如何变形?→构造柯西不等式的形式→板演→变式:→推广:②练习:已知,求的最小值.解答要点:(凑配法).讨论:其它方法(数形结合法)2.不等式的证明:①出示例2:若,,求证:.分析:如何变形后利用柯西不等式?(注意对比→构造)要点:…讨论:其它证法(利用基本不等式)②练习:已知、,求证:.教学札记三、应用举例:例1已知a1,a2,…,an都是实数,求证:分析:用n乘要证的式子两边,能使式子变成明显符合柯西不等式的形式。例2已知a,b,c,d是不全相等的实数,证明:a2+b
3、2+c2+d2>ab+bc+cd+da分析:上式两边都是由a,b,c,d这四个数组成的式子,特别是右边式子的字母排列顺序启发我们,可以用柯西不等式进行证明。分析:由形式,联系柯西不等式,可以通过构造(12+22+32)作为一个因式而解决问题。四、巩固练习:1.练习:教材P378、9题练习:1.设x,y,z为正实数,且x+y+z=1,求的最小值。2.已知a+b+c+d=1,求a2+b2+c2+d2的最小值。3.已知a,b,c为正实数,且a+2b+3c=9,求的最大值。选做:4.已知a,b,c为正实数,且a2+2b2
4、+3c2=6,求a+b+c的最小值。(08广一模)5.已知a,b,c为正实数,且a+2b+c=1,求的最小值。(08东莞二模)6.已知x+y+z=,则m=x2+2y2+z2的最小值是____________.(08惠州调研)五、布置作业:教材P371、6、7题①已知,且,则的最小值.要点:….→其它证法②若,且,求的最小值.(要点:利用三维柯西不等式)变式:若,且,求的最大值.六、课堂小结:比较柯西不等式的形式,将目标式进行变形,注意凑配、构造等技巧.七、教学后记:
此文档下载收益归作者所有