欢迎来到天天文库
浏览记录
ID:29270605
大小:156.50 KB
页数:4页
时间:2018-12-18
《八年级数学下册 24.3 平行线的判定定理教案 冀教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.3平行线的判定定理教学目标1.理解和掌握平行线的判定公理及两个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.教学重点证明的步骤和格式教学难点推理过程的规范化表达教学方法引导发现与讨论相结合教学过程一、巧设情境,引入新课前面我们探索过直线平行的条件,大家想一想:两条直线在什么情况下互相平行呢?在同一平面内,不相交的两条直线就叫做平行线.同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.上节课我们
2、学习了要证实一个命题是真命题,除公理、定义外,其他真命题都需要证明,这节课我们学习平行线的判定定理(板书课题).二、讲授新课1.平行线的判定定理一两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.这是一个文字题,需要先把命题的文字语言转化成几何图形和符号语言,所以根据题意,可以把这个文字题转化为下列形式:已知:∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补,求证:a∥b.那么如何证明呢?我们来分析分析.要证明直线a与b平行,可以想到应用平行线的判定公理来证明,这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a与b即平行.因为从图中可知∠2
3、与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2,又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知)∴∠1+∠2=180°(互补的定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(1平角=180°)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)∴a∥b(同位角相等,两直线平行)注意:(1)已给的公理,定义和已经证明的定理以后都
4、可以作为依据用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理,在初学证明时,要求把根据写在每一步推理后面的括号内.2.两直线平行的判定定理二议一议用下面的方法作出了平行线,对吗?为什么?如图所示:∠CFE=45°,∠BEF=45°,因为∠BEF与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°,而∠CFE与∠FEA是同旁内角,且这两个角的和为180°,因此可知:CD∥AB.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.已知,如
5、图,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.求证:a∥b证明:∵∠1=∠2(已知)∠1+∠3=180°(1平角=180°)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.3.证明的一般步骤:第一步:根据题意,画出图形.先根据命题的条件即已知事项,画出图形,再把命题的结论即求证的内容在图上标出符号,还要根据证明的需要在图上标出必要的字母或符号,以便于叙述或推理过程的表达.第二步:根据条件、结论,结合图形,写出已知、求证.把命题的条件化为几何符号的语言
6、写在已知中,命题的结论转化为几何符号的语言写在求证中.第三步,经过分析,找出由已知推出求证的途径,写出证明过程.一般情况下,分析的过程不要求写出来,有些题目中,已经画出了图形,写好了已知、求证,这时只要写出“证明”一项就可以了4.运用所学知识证明:“如果两条直线都和第三条直线垂直,那么这两条直线平行”.已知,如图,直线a⊥c,b⊥c.求证:a∥b证明:∵a⊥c,b⊥c(已知)∴∠1=90°,∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴a∥b(同位角相等,两直线平行)三、课堂练习课本P124随堂练习1,2,3四、小结1.平行线的判定同位角相等,两直线平行.(公理)内错角相等,两直
7、线平行.(定理)同旁内角互补,两直线平行.(定理)如果两条直线都和第三条直线垂直,那么这两条直线平行.(推论)如果两条直线都和第三条直线平行,那么这两条直线平行2.证明的一般步骤(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.五、作业课本P125习题1、2课后随笔
此文档下载收益归作者所有