九年级数学下册 第五章《对函数的再探索》教案 青岛版

九年级数学下册 第五章《对函数的再探索》教案 青岛版

ID:29246474

大小:1.72 MB

页数:60页

时间:2018-12-18

九年级数学下册 第五章《对函数的再探索》教案 青岛版_第1页
九年级数学下册 第五章《对函数的再探索》教案 青岛版_第2页
九年级数学下册 第五章《对函数的再探索》教案 青岛版_第3页
九年级数学下册 第五章《对函数的再探索》教案 青岛版_第4页
九年级数学下册 第五章《对函数的再探索》教案 青岛版_第5页
资源描述:

《九年级数学下册 第五章《对函数的再探索》教案 青岛版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、教学目标1.认识一元一次不等式与一次函数问题的转化关系.毛2.学会用图象法求解不等式.3.进一步理解数形结合思想.教学重点1.理解一元一次不等式与一次函数的转化关系及本质联系.2.掌握用图象求解不等式的方法.教学难点图象法求解不等式中自变量取值范围的确定.教学方法思考─交流,归纳─总结.教学过程Ⅰ.提出问题,创设情境[师]我们来看下面两个问题有什么关系?1.解不等式5x+6>3x+10.2.当自变量x为何值时函数y=2x-4的值大于0?在问题1中,不等式5x+6>3x+10可以转化为2x-4>0,解这个不等式得x>2.解问题2就是要解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0

2、.因此这两个问题实际上是同一个问题.那么,是不是所有的一元一次不等式都可转化为一次函数的相关问题呢?它在函数图象上的表现是什么?如何通过函数图象来求解一元一次不等式?以上这些问题,我们本节将要学到.Ⅱ.导入新课[师]我们先观察函数y=2x-4的图象.可以看出:当x>2时,直线y=2x-4上的点全在x轴上方,即这时y=2x-4>0.由此可知,通过函数图象也可求得不等式的解为x>2.由上面两个问题的关系,我们能得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”之间的关系,实质上是同一个问题.由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b

3、为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,求自变量相应的取值范围.[活动一]活动内容设计:用画函数图象的方法解不等式5x+4<2x+10.活动设计意图:通过这一活动使学生熟悉一元一次不等式与一次函数值大于或小于0时,自变量取值范围的问题间关系,并寻求出解决这一问题的具体方法,灵活运用.教师活动:引导学生通过画图、观察、寻求答案,并能通过两种不同解法,得到同一答案,探索思考总结归纳出其中的共同点.学生活动:在教师指导下,顺利完成作图,观察求出答案,并能归纳总结出其特点.活动过程及结论:方法一:原不等式可以化为3x-6<0,画出直线y=3x-6的图象,

4、可以看出,当x<2时这条直线上的点在x轴的下方.即这时y=3x-6<0,所以不等式的解集为:x<2.方法二:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10可以看出,它们交点的横坐标为2.当x>2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上的相应点的下方,这时5x+4<2x+10,所以不等式的解集为:x<2.以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低.[师]从上面两种解法可以看出,虽然像上面那样用一次函数图象来解不等式未必简单,但是从函数角度看问题,能发现一次函数.一元一次不等式之间的联系,能直观地看出怎样用图形来表示不等式的

5、解.这种函数观点认识问题的方法,对于继续学习数学很重要.巩固练习1.当自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?①y=-7.②y<2.2.利用图象解出x:6x-4<3x+2.板书设计§11.3.2一次函数与一元一次不等式一、一次函数与一元一次不等式的联系二、图象上的不等式三、例题四、随堂练习教学反思:初三数学教案设计集体备课个人备课序号授课时间年月日教学内容反比例函数  教学目标:  1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;  2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;  3、渗透数形结合的数学思想及普遍联系的辨证唯物主

6、义思想;  教学重点:  结合图象分析总结出反比例函数的性质;  教学难点:描点画出反比例函数的图象  教学方法:小组合作、探究式  教学过程:  1、从实际引出反比例函数的概念  我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例  即vt=S(S是常数);  当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)  从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:   (S是常数)     一般地,函数(k是常数,)叫做反比例函数.  如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数

7、.  在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供  2、列表、描点画出反比例函数的图象  例1、画出反比例函数与的图象  解:列表x-6-5-4-3123456-1-1.2-1.5-26321.51.2111.21.52-6-3-2-1.5-1.21  说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图  一般地反

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。