中考数学总复习九 图形的变换及三视图 北京实验版

中考数学总复习九 图形的变换及三视图 北京实验版

ID:29170342

大小:2.24 MB

页数:14页

时间:2018-12-17

中考数学总复习九 图形的变换及三视图 北京实验版_第1页
中考数学总复习九 图形的变换及三视图 北京实验版_第2页
中考数学总复习九 图形的变换及三视图 北京实验版_第3页
中考数学总复习九 图形的变换及三视图 北京实验版_第4页
中考数学总复习九 图形的变换及三视图 北京实验版_第5页
资源描述:

《中考数学总复习九 图形的变换及三视图 北京实验版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、中考数学总复习九图形的变换及三视图北京实验版一.本周教学内容:中考总复习(九)——图形的变换及三视图二.教学目标:1.复习图形变换及三视图的相关概念及性质.2.应用相关概念及性质解答问题.3.提高应用变换思想解题能力.三.教学重点、难点:深入理解并应用相关概念及性质解答问题.四.教学过程:知识点:(一)平移变换1.平移的概念:平面内将一个图形沿某个方向移动一定的距离,这种图形变换称为平移.注:平移变换的两个要素:移动的方向、距离.2.平移变换的性质(1)平移前后的图形全等.即:平移只改变图形的位置,不

2、改变图形的形状和大小:(2)对应线段平行(或共线)且相等;(3)对应点所连的线段平行(或共线)且相等.如图所示,,且共线,且3.用坐标表示平移:(1)在平面直角坐标系中,将点:①向右或向左平移a个单位点或②向上或向下平移b个单位点或(2)对一个图形进行平移,相当于将图形上的各个点的横纵坐标都按(1)中的方式作出改变(二)轴对称变换1.轴对称的概念:把一个图形沿一条直线翻折过去,如果它能够与另一个图形重合,那么这两个图形关于这条直线对称或轴对称.这条直线就是对称轴.两个图形中的对应点(即两图形重合时互相

3、重合的点)叫做对称点.如图所示,关于直线l对称,l为对称轴.2.轴对称图形:把一个图形沿一条直线对折,对折的两部分能够完全重合,那么就称这个图形为轴对称图形,这条直线就是这个轴对称图形的对称轴.一个图形的对称轴可以有1条,也可以有多条.3.轴对称与轴对称图形的区别与联系:区别联系轴对称轴对称是指两个图形的对称关系把轴对称的两个图形看成一个“整体”(一个图形),则称为轴对称图形;把轴对称图形的互相对称的两个部分看成“两个图形”,则它们成轴对称轴对称图形轴对称图形是指具有某种对称特性的一个图形4.轴对称的

4、性质:(1)关于某条直线对称的两个图形全等;(2)对称点的连线段被对称轴垂直平分;(3)对应线段所在的直线如果相交,则交点在对称轴上;(4)轴对称图形的重心在对称轴上.如图被直线l垂直平分.5.轴对称变换的作图:举例说明:已知四边形ABCD和直线l,求作四边形ABCD关于直线l的对称图形.作法:(1)过点A作l于E,延长AE到A’,使,则得到点A的对称点;(2)同理作B、C、D的对称点;(3)顺次连结.则四边形为四边形ABCD关于直线l的对称图形.6.用坐标表示轴对称:点关于x轴对称的点为;点关于y轴

5、对称的点为;*点关于直线的对称点为;点关于直线的对称点为;点关于直线的对称点为点关于直线的对称点为.(三)旋转变换1.旋转变换的概念:在平面内,将一个图形绕一个定点O沿某个方向(逆时针或顺时针)转动一定的角度,这样的图形变换叫做旋转.这个定点O叫旋转中心,转动的角称为旋转角.注:旋转变换的三要素:旋转中心,旋转方向,旋转角2.旋转变换的性质:(1)旋转前、后的图形全等(2)对应点到旋转中心的距离相等(意味着:旋转中心在对应点连线段的垂直平分线上)(3)对应点与旋转中心所连线段的夹角等于旋转角3.旋转变

6、换的作图:(1)确定旋转中心、旋转方向和旋转角度;(2)找出能确定图形的关键点;(3)连结图形的关键点与旋转中心,并按旋转的方向分别将它们旋转一个旋转角,得到此关键点的对应点;(4)按原图形的顺序连结这些对应点,所得图形就是旋转后的图形.5.旋转对称性:如果某图形绕着某一定点转动一定角度(小于360°)后能与自身重合,那么这种图形就叫做旋转对称图形.6.中心对称:把一个图形绕着某个定点旋转180°,如果它能和另一个图形重合,那么这两个图形关于这个定点对称或中心对称.这个定点叫做对称中心,两个图形中对应

7、点叫做关于对称中心的对称点.7.中心对称的性质:中心对称是一种特殊的旋转,因此,它具有旋转的一切性质,另外,还有自己特殊的性质.(1)关于中心对称的两个图形全等;(2)关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分(即:对称中心是两个对称点连线的中点);(3)关于中心对称的两个图形,对应线段平行(或共线);(4)中心对称图形的重心在其对称中心;且过对称中心的直线平分该图形的面积.如图所示,若关于点O中心对称,则对称中心O是线段共同的中点,且,且;反过来,若线段都经过点O且O是它

8、们的中点,那么关于点O中心对称.8.中心对称的作图:以上图为例,作关于点O的对称图形:(1)找出能确定原图形的关键点,如顶点A、B、C;(2)分别作出原图形的关键点的对称点.如:连结AO,并在AO的延长线上截取,则点A’为点A关于点O的对称点;(3)按原图形的连结方式顺次连结各关键点的对应点,即点.所得的图形即为求作的对称图形.9.中心对称图形:一个图形绕着一个定点旋转180°后能与自身重合,这种图形称为中心对称图形.这个定点叫做该图形的对称中心.中心对

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。