欢迎来到天天文库
浏览记录
ID:28940985
大小:435.00 KB
页数:14页
时间:2018-12-15
《数学中考总复习:图形的变换--知识讲解(提高)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、精品中考总复习:图形的变换--知识讲解(提高)【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1.平移的概念:在平面内,将一个
2、图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.【要点诠释】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平
3、移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【要点诠释】(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.考点二、轴对称变换1.轴对称与轴对称图形 轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个
4、图形叫做轴对称图形.精品2.轴对称变换的性质 ①关于直线对称的两个图形是全等图形. ②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线. ③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上. ④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤 ①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点. ②按原图形的连结方式顺次连结对称点即得所作图形.4.翻折变换:图形翻折问题是近年来中考的一个热点,其实质是轴对称问题,折叠重合部
5、分必全等,折痕所在直线就是这两个全等形的对称轴,互相重合的两点(对称点)连线必被折痕垂直平分.【要点诠释】翻折的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等,折叠图形中有相似三角形,常用勾股定理.考点三、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质 图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的
6、形状、大小都没有发生变化.3.旋转作图步骤 ①分析题目要求,找出旋转中心,确定旋转角. ②分析所作图形,找出构成图形的关键点. ③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点. ④按原图形连结方式顺次连结各对应点.【要点诠释】1.图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.2.平移、旋转和轴对称之间的联系 一个图形沿两条平行直线翻折(轴
7、对称)两次相当于一次平移,沿不平行的两条直线翻折两次相当于一次旋转,其旋转角等于两直线交角的2倍.【典型例题】类型一、平移变换1.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.(1)证明△A′AD′≌△CC′B;(2)若∠ACB=30°,试问当点C′在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.精品【思路点拨】(1)根据已知利用SAS判定△A′AD′≌△CC′B;(2)由已知可推出四边形ABC′D′是平行四边形,只要再证明一组邻边相等即可确定四边形ABC′D′是菱形,由已知可得到BC
8、′=AC,AB=AC,从而得到AB=BC′,所以四边形ABC′D′是菱形.【答案与解析】(1)证明:∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,∴A′D′=AD=C
此文档下载收益归作者所有