高中数学第2章圆锥曲线与方程2椭圆学案苏教版选修1

高中数学第2章圆锥曲线与方程2椭圆学案苏教版选修1

ID:29149500

大小:1.01 MB

页数:27页

时间:2018-12-17

高中数学第2章圆锥曲线与方程2椭圆学案苏教版选修1_第1页
高中数学第2章圆锥曲线与方程2椭圆学案苏教版选修1_第2页
高中数学第2章圆锥曲线与方程2椭圆学案苏教版选修1_第3页
高中数学第2章圆锥曲线与方程2椭圆学案苏教版选修1_第4页
高中数学第2章圆锥曲线与方程2椭圆学案苏教版选修1_第5页
资源描述:

《高中数学第2章圆锥曲线与方程2椭圆学案苏教版选修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2.1 椭圆的标准方程1.了解椭圆标准方程的推导过程.(难点)2.会求椭圆的标准方程.(重点)3.能运用椭圆的标准方程处理一些简单的实际问题.[基础·初探]教材整理 椭圆的标准方程阅读教材P28~P29例1部分,完成下列问题.焦点在x轴上焦点在y轴上标准方程+=1(a>b>0)+=1(a>b>0)图形焦点坐标(-c,0),(c,0)(0,-c),(0,c)a,b,c的关系b2=a2-c21.判断正误:(1)椭圆的两种标准方程中,虽然焦点位置不同,但都有a2=b2+c2.(  )(2)方程2x2+y2=4表示的曲线不是椭圆.(  )(3)圆是椭圆的特殊形式.(  )(4)方程+=1(

2、a>0),表示焦点在x轴上的椭圆.(  )【解析】 (1)√.由椭圆方程的推导过程可知a2=b2+c2.(2)×.把方程2x2+y2=4化为标准形式为+=1,易知其表示的曲线是椭圆.(3)×.由圆和椭圆的定义可知其错误.(4)×.当a2>2a,即a>2时,方程+=1(a>0)才表示焦点在x轴上的椭圆,否则不是.【答案】 (1)√ (2)× (3)× (4)×2.a=5,c=3,焦点在y轴上的椭圆的标准方程为______.【解析】 ∵a=5,c=3,∴b2=25-9=16,又∵焦点在y轴上,∴椭圆的方程为+=1.【答案】 +=1[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”

3、探讨交流:疑问1:________________________________________________________解惑:________________________________________________________疑问2:________________________________________________________解惑:________________________________________________________疑问3:_________________________________________________

4、_______解惑:________________________________________________________[小组合作型]求椭圆的标准方程 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0);(2)经过点A(,-2)和点B(-2,1).【导学号:24830026】【精彩点拨】 (1)利用椭圆的定义或待定系数法求解;(2)利用待定系数法求解.【自主解答】 (1)方法一:由于椭圆的焦点在x轴上,∴设它的标准方程为+=1(a>b>0).由题意得解得所以椭圆的标准方程为+=1.方法二:由于椭圆的焦点在x轴上,∴设它

5、的标准方程为+=1(a>b>0).∵2a=+=10,∴a=5.又c=4,∴b2=a2-c2=25-16=9.故所求椭圆的标准方程为+=1.方法三:由于椭圆的焦点在x轴上,∴设它的标准方程为+=1(a>b>0).因为椭圆经过点(5,0),所以a=5,又因为椭圆的焦点为(-4,0)和(4,0),所以c=4,所以b2=a2-c2=9,故所求椭圆的标准方程为+=1.(2)方法一:①当焦点在x轴上时,设椭圆的标准方程为+=1(a>b>0).依题意有,解得.故所求椭圆的标准方程为+=1.②当焦点在y轴上时,设椭圆的标准方程为+=1(a>b>0).依题意有,解得,因为a>b>0,所以无解.所以所求椭

6、圆的标准方程为+=1.方法二:设所求椭圆的方程为mx2+ny2=1(m>0,n>0,m≠n),依题意有,解得.所以所求椭圆的标准方程为+=1.1.确定椭圆方程的“定位”与“定量”.2.巧设椭圆方程.(1)若椭圆的焦点位置不确定,需要分焦点在x轴上和在y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B).(2)与椭圆+=1有相同焦点的椭圆方程可设为+=1.[再练一题]1.求适合下列条件的椭圆的标准方程:(1)焦点在y轴上,且经过两个点(0,2)和(1,0);(2)过点A(3,-2)且与椭圆+=1有相同焦点.【解】 (1)由于椭圆的焦点在y轴上,∴设它的标准方

7、程为+=1(a>b>0).由于椭圆经过点(0,2)和(1,0),∴,⇒.故所求椭圆的标准方程为+x2=1.(2)由题意得c2=9-4=5,又已知椭圆的焦点在x轴上,故所求椭圆方程可设为+=1(λ>0),代入点A坐标得+=1.解得λ=10或λ=-2(舍),故所求椭圆的方程为+=1.与椭圆有关的轨迹问题 如图221所示,圆x2+y2=1上任意一点P,过点P作x轴的垂线段PP′,P′为垂足.M为直线PP′上一点,且P′M=λPP′(λ为大于零的常数)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。