高中数学《圆锥曲线与方程 综合》学案3 北师大版选修2-1

高中数学《圆锥曲线与方程 综合》学案3 北师大版选修2-1

ID:29148833

大小:504.00 KB

页数:9页

时间:2018-12-17

高中数学《圆锥曲线与方程 综合》学案3 北师大版选修2-1_第1页
高中数学《圆锥曲线与方程 综合》学案3 北师大版选修2-1_第2页
高中数学《圆锥曲线与方程 综合》学案3 北师大版选修2-1_第3页
高中数学《圆锥曲线与方程 综合》学案3 北师大版选修2-1_第4页
高中数学《圆锥曲线与方程 综合》学案3 北师大版选修2-1_第5页
资源描述:

《高中数学《圆锥曲线与方程 综合》学案3 北师大版选修2-1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、求圆锥曲线方程求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.●难点磁场1.(★★★★★)双曲线=1(b∈N)的两个焦点F1、F2,P为双曲线上一点,

2、OP

3、<5,

4、PF1

5、,

6、F1F2

7、,

8、PF2

9、成等比数列,则b2=_________.2.(★★★★)如图,设圆P满足:①截y轴所得弦长为2;②被

10、x轴分成两段圆弧,其弧长比为3∶1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.●案例探究[例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14m,CC′=18m,BB′=22m,塔高20m.(1)建立坐标系并写出该双曲线方程.(2)求冷却塔的容积(精确到10m2,塔壁厚度不计,π取3.14).命题意图:本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查

11、应用所学积分知识、思想和方法解决实际问题的能力,属★★★★★级题目.知识依托:待定系数法求曲线方程;点在曲线上,点的坐标适合方程;积分法求体积.错解分析:建立恰当的坐标系是解决本题的关键,积分求容积是本题的重点.技巧与方法:本题第一问是待定系数法求曲线方程,第二问是积分法求体积.解:如图,建立直角坐标系xOy,使AA′在x轴上,AA′的中点为坐标原点O,CC′与BB′平行于x轴.设双曲线方程为=1(a>0,b>0),则a=AA′=7又设B(11,y1),C(9,x2)因为点B、C在双曲线上,所以有由题意,知y2-y1=20,由以上三式得:y1=-1

12、2,y2=8,b=7故双曲线方程为=1.(2)由双曲线方程,得x2=y2+49设冷却塔的容积为V(m3),则V=π,经计算,得V=4.25×103(m3)答:冷却塔的容积为4.25×103m3.[例2]过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为的椭圆C相交于A、B两点,直线y=x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程.命题意图:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强,属★★★★★级题目.知识依托:待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题

13、.错解分析:不能恰当地利用离心率设出方程是学生容易犯的错误.恰当地利用好对称问题是解决好本题的关键.技巧与方法:本题是典型的求圆锥曲线方程的问题,解法一,将A、B两点坐标代入圆锥曲线方程,两式相减得关于直线AB斜率的等式.解法二,用韦达定理.解法一:由e=,得,从而a2=2b2,c=b.设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上.则x12+2y12=2b2,x22+2y22=2b2,两式相减得,(x12-x22)+2(y12-y22)=0,设AB中点为(x0,y0),则kAB=-,又(x0,y0)在直线y=x上,y

14、0=x0,于是-=-1,kAB=-1,设l的方程为y=-x+1.右焦点(b,0)关于l的对称点设为(x′,y′),由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=.∴所求椭圆C的方程为=1,l的方程为y=-x+1.解法二:由e=,从而a2=2b2,c=b.设椭圆C的方程为x2+2y2=2b2,l的方程为y=k(x-1),将l的方程代入C的方程,得(1+2k2)x2-4k2x+2k2-2b2=0,则x1+x2=,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-.直线l:y=x过AB的中点(),则,解得k=0,或k

15、=-1.若k=0,则l的方程为y=0,焦点F(c,0)关于直线l的对称点就是F点本身,不能在椭圆C上,所以k=0舍去,从而k=-1,直线l的方程为y=-(x-1),即y=-x+1,以下同解法一.[例3]如图,已知△P1OP2的面积为,P为线段P1P2的一个三等分点,求以直线OP1、OP2为渐近线且过点P的离心率为的双曲线方程.命题意图:本题考查待定系数法求双曲线的方程以及综合运用所学知识分析问题、解决问题的能力,属★★★★★级题目.知识依托:定比分点坐标公式;三角形的面积公式;以及点在曲线上,点的坐标适合方程.错解分析:利用离心率恰当地找出双曲线的

16、渐近线方程是本题的关键,正确地表示出△P1OP2的面积是学生感到困难的.技巧与方法:利用点P在曲线上和△P1OP2的面积建

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。