欢迎来到天天文库
浏览记录
ID:29146975
大小:12.26 MB
页数:7页
时间:2018-12-17
《高中数学 第一章5.1 平行关系的判定目标导学 北师大版必修2 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§5 平行关系5.1 平行关系的判定问题导学1.对平行关系的理解活动与探究1判断下列给出的各种说法是否正确?(1)如果直线a和平面α不相交,那么a∥α;(2)如果直线a∥平面α,直线b∥a,那么b∥α;(3)如果直线a∥平面α,那么经过直线a的平面β∥α;(4)如果平面α内的两条相交直线a和b与平面β内的两条相交直线a′和b′分别平行,那么α∥β.迁移与应用1.下列叙述中,正确的是( ).A.若直线l平行于平面α内的无数条直线,则l∥αB.若直线a在平面α外,则a∥αC.若直线a∥b,直线bα,则a∥αD.若直线a∥b,bα,那么直线a平行于平面α内的无数条直线2.两个平面平
2、行的条件是( ).A.一个平面内的一条直线平行于另一平面B.一个平面内有两条直线平行于另一平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线平行于另一个平面1.要全面、深刻地理解线面平行、面面平行的判定定理,运用这两个定理证明问题或判断分析结论是否正确时,一定要紧扣两个定理的条件,忽视条件,很容易导致判断错误.[来2.在判断一些命题的真假时,要善于列举反例来否定一个命题,要充分考虑线线关系、线面关系、面面关系中的各种情形,以对一个命题的真假作出合理的判断.2.直线与平面平行的判定活动与探究2如右图,在正方体ABCD-A1B1C1D1中,M∈AD1,N∈B
3、D,且D1M=DN,求证:MN∥平面CC1D1D.迁移与应用1.如图,P是平行四边形ABCD所在平面外一点,Q是PA的中点,求证:PC∥平面BDQ.2.如图所示,在四棱锥S-ABCD中,底面ABCD为平行四边形,E,F分别为AB,SC的中点.求证:EF∥平面SAD.证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线.把握几何体的结构特征,合理利用几何体中的三角形的中位线,平行四边形对边平行等平面图形的特点找线线平行关系是常用方法.3.平面与平面平行的判定活动与探究3如图,已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上,且
4、PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.迁移与应用如图,在棱长为a的正方体ABCD-A1B1C1D1中,E,F,G分别是CB,CD,CC1的中点.求证:平面AB1D1∥平面EFG.证明面面平行的基本思想是将面面平行转化为线面平行,其基本步骤是:线线平行⇒线面平行⇒面面平行.但必须注意的是:在其中一个面内找到的两条直线必须是相交直线,且这两条相交直线都与另一个平面平行时,这两个平面才平行.当堂检测1.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是( ).A.一定平行B.一定相交C.平行或相交D.以上都不对2.A,B是不
5、在直线l上的两点,则过点A,B且与直线l平行的平面的个数是( ).A.0B.1C.无数D.以上三种情况均有可能3.梯形ABCD中,AB∥CD,ABα,CDα,则直线CD与平面α的位置关系是__________.4.如图,在四棱锥P-ABCD中,底面ABCD是矩形,E,F分别是PB,PC的中点.证明EF∥平面PAD.5.如图所示,在正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点.求证:平面AMN∥平面EFDB.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.答案:课前预习导学预习导
6、引1.(1)一条直线平行预习交流1 提示:直线a平面α是指a∥α或a与α相交.预习交流2 提示:不正确.不符合线面平行的判定定理,只有当直线l在平面α外,且与平面α内的一条直线平行时,直线l才与平面平行.预习交流3 提示:(1)线面平行的判定定理表明可以通过直线间的平行,推证直线与平面平行.这是处理空间问题的一种常用方法,即将直线与平面的平行关系转化为直线与直线的平行关系,把空间问题平面化.(2)线面平行的判定定理在使用时三个条件缺一不可:①直线a不在平面α内,即aα;②直线b在平面α内,即bα;③两条直线a,b平行,即a∥b.2.(1)两条相交直线预习交流4 提示:不一定,平
7、面α与平面β相交或平行.预习交流5 提示:一定平行.由直线与平面平行的判定定理知,平面α内的两条相交直线与平面β都平行,再由面面平行的判定定理可得α∥β.课堂合作探究问题导学活动与探究1 思路分析:按照线面平行、面面平行的定义及判定定理对每个命题进行分析判断,得出其是否正确.解:(1)不正确.当直线a和平面α不相交时,可能有aα,不一定有a∥α;(2)不正确.当直线b∥a时,如果bα,则有b∥α,如果bα,则没有b∥α;(3)不正确.当a∥α时,经过直线a的平面β可能与α平行,也可能与α相交
此文档下载收益归作者所有