欢迎来到天天文库
浏览记录
ID:29146370
大小:292.50 KB
页数:5页
时间:2018-12-17
《高中数学 第2章第24课时对数函数(2)学案 苏教版必修1 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、听课随笔第二十四课时对数函数(2)学习要求1.复习巩固对数函数的图象和性质;2.会求一类与对数函数有关的复合函数的定义域、值域等;3.了解函数图像的平移变换、对称变换、绝对值变换。.自学评价1.函数的图象是由函数的图象2.函数的图象是由函数的图象得到。3.函数()的图象是由函数的图象当时先向左平移b个单位,再向上平移c个单位得到;当时先向右平移
2、b
3、个单位,再向上平移c个单位得到;当时先向左平移b个单位,再向下平移
4、c
5、个单位得到;当时先向右平移
6、b
7、个单位,再向下平移
8、c
9、个单位得到。4.说明:上述变换称为平移变换。【精典范例】例1:
10、说明下列函数的图像与对数函数的图像的关系,并画出它们的示意图,由图像写出它的单调区间:(1);(2); (3);(4)分析:由函数式出发分析它与的关系,再由的图象作出相应函数的图象。【解】(1)(1,0)图象(略)(1,0)由图象知:单调增区间为,单调减区间为。(2)由图象知:单调增区间为,单调减区间为。(3)由图象知:单调减区间为。(4)(1,0)y(-1,0)由图象知:单调减区间为。点评:(1)上述变换称为对称变换。一般地:①;②;③;④(2)练习:怎样由对数函数的图像得到下列函数的图像?(1);(2);答案:(1)由的图象先向2左
11、平移1个单位,保留上方部分的图象,并把轴下方部分的图象翻折上去得到的图象。(2)的图象是关于轴对称的图象。例2:求下列函数的定义域、值域:(1);(2);(3)(且).分析:这是复合函数的值域问题,复合函数的值域的求法是在定义域的基础上,利用函数的单调性,由内而外,逐层求解。点评:求复合函数的值域一定要注意定义域。例3:设f(x)=lg(ax2-2x+a),(1)如果f(x)的定义域是(-∞,+∞),求a的取值范围;(2)如果f(x)的值域是(-∞,+∞),求a的取值范围.追踪训练一1.比较下列各组值的大小:(1),;(2),,;2.解
12、下列不等式:(1)(2)3.画出函数与的图象,并指出这两个函数图象之间的关系。【选修延伸】例4:已知,比较,的大小。[分析]:由条件可得:;所以,,则。[变式]:已知,则,的大小又如何?【解】∵,∴,当,时,得,∴,∴.当,时,得,∴,∴.当,时,得,,∴,,∴.综上所述,,的大小关系为或或思维点拔:对于不同底的对数式,一般的方法是转化为同底的对数式,然后再利用对数函数的单调性求解,此类题目也可以用对数函数的图象的分布特征求解。数形结合是解决函数问题的重要思想方法。追踪训练二1比较下列各组值的大小.,,学生质疑教师释疑
此文档下载收益归作者所有