欢迎来到天天文库
浏览记录
ID:29107285
大小:87.00 KB
页数:3页
时间:2018-12-16
《中考复习教案教案:第8课时根的判别式1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、精品 教学目标:1、了解根的判别式的概念;2、能用判别式判别根的情况.3、进一步渗透转化和分类的思想方法.教学重点:会用判别式判定根的情况.教学难点:正确理解“当b2-4ac<0时,方程ax2+bx+c=0(a≠0)无实数根.”教学过程:在前一节的“公式法”部分已经涉及到了,当b2-4ac≥0时,可以求出两个实数根.那么b2-4ac<0时,方程根的情况怎样呢?这就是本节课的目标.本节课将进一步研究b2-4ac>0,b2-4ac=0,b2-4ac<0三种情况下的一元二次方程根的情况.在推导一元二次方程求根公式时,得到b2-4ac决定
2、了一元二次方程的根的情况,称b2-4ac为根的判别式.一元二次方程根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也有利于进一步学习函数的有关内容,并且可以解决许多其它问题.在探索一元二次方程根的情况是由谁决定的过程中,要求学生从中体会转化的思想方法以及分类的思想方法,对学生思维全面性的考察起到了一个积极的渗透作用.一、新课引入:(1)平方根的性质是什么?(2)解下列方程:①x2-3x+2=0;②x2-2x+1=0;③x2+3=0.问题(1)为本节课结论的得出起到了一个很好的铺垫作用.问题
3、(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用.二、新课讲解:任何一个一元二次方程ax2+bx+c=0(a≠0)用配方法将(1)当b2-4ac>0时,方程有两个不相等的实数根.精品(3)当b2-4ac<0时,方程没有实数根.教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?答:b2-4ac.①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用符号“△”表示.②一元二次方程ax2+bx+c=0(a≠0).当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根
4、;当△<0时,没有实数根.反之亦然.注意以下几个问题:(1)∵ a≠0,∴ 4a2>0这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况.正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫.在这里应向学生渗透转化和分类的思想方法.(2)当b2-4ac<0,说“方程ax2+bx+c=0(a≠0)没有实数根”比较好.有时,也说“方程无解”.这里的前提是“在实数范围内无解”,也就是方程无实数根”的意思.例1 不解方程,判别下列方程的根的情况:(1)2x2+3x-4=0;(2
5、)16y2+9=24y;(3)5(x2+1)-7x=0.解:(1)∵ △=32-4×2×(-4)=9+32>0,∴ 原方程有两个不相等的实数根.(2)原方程可变形为16y2-24y+9=0.∵ △=(-24)2-4×16×9=576-576=0,∴ 原方程有两个相等的实数根.(3)原方程可变形为5x2-7x+5=0.∵ △=(-7)2-4×5×5=49-100<0,∴ 原方程没有实数根.学生口答,教师板书,引导学生总结步骤,(1)化方程为一般形式,确定a、b、c的值;(2)计算b2-4ac的值;(3)判别根的情况.强调两点:(1)
6、只要能判别△值的符号就行,具体数值不必计算出.(2)判别根的情况,不必求出方程的根.练习.不解方程,判别下列方程根的情况:(1)3x2+4x-2=0;(2)2y2+5=6y;(3)4p(p-1)-3=0;(4)(x-2)2+2(x-2)-8=0;学生板演、笔答、评价.(4)题可去括号,化一般式进行判别,也可设y=x-2,判别方程y2+2y-8=0根的情况,由此判别原方程根的情况.精品又∵ 不论k取何实数,△≥0,∴ 原方程有两个实数根.教师板书,引导学生回答.此题是含有字母系数的一元二次方程.注意字母的取值范围,从而确定b2-4a
7、c的取值.练习:不解方程,判别下列方程根的情况.(1)a2x2-ax-1=0(a≠0);(3)(2m2+1)x2-2mx+1=0.学生板演、笔答、评价.教师渗透、点拨.(3)解:△=(-2m)2-4(2m2+1)×1=4m2-8m2-4=-4m2-4.∵ 不论m取何值,-4m2-4<0,即△<0.∴ 方程无实数解.由数字系数,过渡到字母系数,使学生体会到由具体到抽象,并且注意字母的取值.三、课堂小结:(1)判别式的意义及一元二次方程根的情况.①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式.用“△”表示②一元
8、二次方程ax2+bx+c=0(a≠0).当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根.反之亦然.(2)通过根的情况的研究过程,深刻体会转化的思想方法及分类的思想方法.四、作业:教材P.29中A1—6.
此文档下载收益归作者所有