欢迎来到天天文库
浏览记录
ID:29104344
大小:418.50 KB
页数:5页
时间:2018-12-16
《等差数列、等比数列的性质及应用6.7.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、节次课题等差数列、等比数列的性质及应用第教时教学目标熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关的问题,培养对知识的转化和应用能力.总第6.7教时月日难点重点等差(比)数列的性质的应用.教后小结等差(比)数列的性质讲解时注意推导过程作业数学之友练习册教学过程:(一)主要知识:有关等差、等比数列的结论1.等差数列的任意连续项的和构成的数列仍为等差数列.2.等差数列中,若,则3.等比数列中,若,则4.等比数列{an}的任意连续项的和构成的数列仍为等比数列.5.两个等差数列与的和差的数列仍为等差数列.6.两个等比数列与的积、商、倒数的数列、、仍为等比数列.(二)主
2、要方法:1.解决等差数列和等比数列的问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于和的方程;②巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量.2.深刻领会两类数列的性质,弄清通项和前项和公式的内在联系是解题的关键.(三)例题分析:例1.(1)若一个等差数列前3项的和为34,最后三项的和为146,且所有项的和为,则这个数列有13项;(2)已知数列是等比数列,且,,,则9.(3)等差数列前项和是,前项和是,则它的前项和是210. 例2.若数列成等差数列,且,求.解:(法一)基本量法(略);(法二)设,则得:,,∴,∴.例3.等差数列中共有奇数项,且此数
3、列中的奇数项之和为,偶数项之和为,,求其项数和中间项.解:设数列的项数为项,则,∴,∴,∴数列的项数为,中间项为第项,且.说明:(1)在项数为项的等差数列中,;(2)在项数为项的等差数列中.例4.数列是首项为,公比为的等比数列,数列满足,(1)求数列的前项和的最大值;(2)求数列的前项和.解:(1)由题意:,∴,∴数列是首项为3,公差为的等差数列,∴,∴由,得,∴数列的前项和的最大值为(2)由(1)当时,,当时,,∴当时,当时,∴.例5*.若和分别表示数列和的前项和,对任意自然数,有,,(1)求数列的通项公式;(2)设集合,.若等差数列任一项是中的最大数,且,求的通项公式.解:(1)当
4、时:,两式相减得:,∴,又也适合上式,∴数列的通项公式为.(2)对任意,,∴,∴∵是中的最大数,∴,设等差数列的公差为,则,∴,即,又是一个以为公差的等差数列,∴,∴,∴.例6、某国采用养老储备金制度。公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利。这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以
5、Tn表示到第n年末所累计的储备金总额。(Ⅰ)写出Tn与Tn-1(n≥2)的递推关系式;(Ⅱ)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列。解:(Ⅰ)我们有(Ⅱ)=①在①式两端同乘1+r,得②②-①,得=即如果记则其中。(四)巩固练习:1.若数列(*)是等差数列,则有数列(*)也为等差数列,类比上述性质,相应地:若数列是等比数列,且(*),则有(*)也是等比数列.2.设和分别为两个等差数列的前项和,若对任意,都有,则第一个数列的第项与第二个数列的第项的比是.说明:.
此文档下载收益归作者所有