欢迎来到天天文库
浏览记录
ID:29097760
大小:318.50 KB
页数:15页
时间:2018-12-16
《益阳市中考数学试卷及答案(word解析版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、精品2014年湖南省益阳市中考数学试卷参考答案与试题解析 一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)(2014•益阳)四个实数﹣2,0,﹣,1中,最大的实数是( ) A.﹣2B.0C.﹣D.1考点:实数大小比较.21世纪教育网版权所有分析:根据正数大于0,0大于负数,正数大于负数,比较即可.解答:解:∵﹣2<﹣<0<1,∴四个实数中,最大的实数是1.故选D.点评:本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数
2、,两个负实数绝对值大的反而小. 2.(4分)(2014•益阳)下列式子化简后的结果为x6的是( ) A.x3+x3B.x3•x3C.(x3)3D.x12÷x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.21世纪教育网版权所有分析:根据同底数幂的运算法则进行计算即可.解答:解:A、原式=2x3,故本选项错误;B、原式=x6,故本选项错误;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.故选B.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则
3、、幂的乘方与积的乘方法则是解答此题的关键. 3.(4分)(2014•益阳)小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( ) A.B.C.D.考点:概率公式.21世纪教育网版权所有分析:由小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,直接利用概率公式求解即可求得答案.精品解答:解:∵小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,∴她从中随机抽取1个,抽中数学题的概率是:=.故选C.点评:此题考查了概
4、率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 4.(4分)(2014•益阳)下列图形中,既是轴对称图形又是中心对称图形的是( ) A.B.C.D.考点:中心对称图形;轴对称图形.21世纪教育网版权所有分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此
5、选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键. 5.(4分)(2014•益阳)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是( ) A.m>1B.m=1C.m<1D.m≤1考点:根的判别式.21世纪教育网版权所有分析:根据根的判别式,令△≥0,建立关于m的不等式,解
6、答即可.解答:解:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选D.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;精品(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 6.(4分)(2014•益阳)正比例函数y=6x的图象与反比例函数y=的图象的交点位于( ) A.第一象限B.第二象限C.第三象限D.第一、三象限考点:反比例函数与一次函数的交点问题.21世纪教育网版权所有专题:计算题.分析:根据反
7、比例函数与一次函数的交点问题解方程组即可得到两函数的交点坐标,然后根据交点坐标进行判断.解答:解:解方程组得或,所以正比例函数y=6x的图象与反比例函数y=的图象的交点坐标为(1,6),(﹣1,﹣6).故选D.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式. 7.(4分)(2014•益阳)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是( )2-1-c-n-j-y A.AE=CFB.BE=FDC.BF=DED.
8、∠1=∠2考点:平行四边形的性质;全等三角形的判定.21世纪教育网版权所有分析:利用平行四边形的性质以及全等三角形的判定分别分得出即可.解答:解:A、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,精品在△ABE和△C
此文档下载收益归作者所有