欢迎来到天天文库
浏览记录
ID:29067668
大小:831.00 KB
页数:20页
时间:2018-12-16
《2018年高考数学 专题2.1 函数的概念以及表示试题 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题2.1函数的概念及其表示【三年高考】1.【2017山东,理1】设函数的定义域,函数的定义域为,则(A)(1,2)(B)(C)(-2,1)(D)上的最大值是5,则的取值范围是___________.【答案】4.【2016高考江苏卷】函数y=的定义域是▲.【答案】【解析】要使函数有意义,必须,即,.故答案应填:.5.【2016年高考北京理数】设函数.①若,则的最大值为______________;②若无最大值,则实数的取值范围是________.【答案】,.6.【2016高考江苏卷】设是定义在上且周期为2的函数,在区间上,其中若
2、,则的值是▲.【答案】【解析】,因此7.【2016年高考四川理数】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;当P是原点时,定义P的“伴随点”为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:①若点A的“伴随点”是点,则点的“伴随点”是点A②单位圆的“伴随曲线”是它自身;③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;④一条直线的“伴随曲线”是一条直线.学=其中的真命题是_____________(写出所有真命题的序列).【答案】②③【解析】对于①,若令,
3、则其伴随点为,而的伴随点为,而不是,故①错误;对于②,设曲线关于轴对称,则与方程表示同一曲线,其伴随曲线分别为与也表示同一曲线,又曲线与曲线的图象关于轴对称,所以②正确;③设单位圆上任一点的坐标为,其伴随点为仍在单位圆上,故②正确;对于④,直线上任一点的伴随点是,消参后点轨迹是圆,故④错误.所以正确的为序号为②③.8.【2015高考浙江,理10】已知函数,则,的最小值是.【答案】,.【解析】,当时,,当且仅当时,等号成立,当时,,当且仅当时,等号成立,故最小值为.9.【2015高考四川,理13】某食品的保鲜时间y(单位:小时)与
4、储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是小时.【答案】24【解析】由题意得:,所以时,.10.【2015高考福建,理14】若函数(且)的值域是,则实数的取值范围是.【答案】【2017考试大纲】(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.【三年高考命题回顾】
5、纵观前三年各地高考试题,此部分知识在高考命题中多以选择题和填空题的形式出现,或与导数结合出一个解答题,主要考查函数的定义域和值域,以及求函数解析式,求函数值与最值,分段函数求值等,试题难度中等,常和其它知识结合出题.【2018年高考复习建议与高考命题预测】由前三年的高考命题形式,函数作为基础知识,单独命题不多,常以求函数解析式来考查立体几何,解析几何,数列,向量,三角函数等内容的最值等问题.具体对函数概念的考查,一般不会以具体形式出现,而是考查通过映射理解函数的本质,体会蕴含在其中的函数思想.对函数定义域的考察,据其内容的特点,
6、在高考中应一般在选择题、填空题中出现,而且一般是一个具体的函数,故难度较低.对函数值域的考察,多以基本初等函数为背景,若在选择题、填空题中出现,则难度较低;若出现在解答题中,则会利用导数工具求解,难度较大.对函数表示的考查,通过具体问题(几何问题和实际应用)为背景,寻求变量间的函数关系,再求函数的定义域和值域,进而研究函数的性质,寻求问题的结果.对分段函数的考察是重点和热点,往往会以工具的形式和其他知识点结合起来考,以新颖的题型考察函数知识,难度会大点.在2018年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习.由于本单元
7、知识点的高考题,难度不大.所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型.由于2016,2017年高考全国卷中对函数概念考查较少,预测2018年高考可能会有以分段函数的形式考查函数概念和函数性质的题目出现.【2018年高考考点定位】高考对函数概念及其表示的考查有三种主要形式:一是考察函数的概念;二是简单函数的定义域和值域;三是函数的解析表示法;其中经常以分段函数为载体考察函数、方程、不等式等知识的相联系.【考点1】函数的概念与映射的概念【备考知识梳理】1.近代定义:设是两个非空的数集,如果按照某种对应法则,对于集合中
8、的每一个数,在集合中都有唯一确定的数和它对应,那么这样的对应叫做从到的一个函数,通常记为2.传统定义:设在一个变化过程中有两个变量x,y,,若对于每一个确定的x的值,都有唯一确定的值y与之对应,则x是自变量,y是x的函数.3.符号表示集合到集合的一个映射,它有以
此文档下载收益归作者所有