欢迎来到天天文库
浏览记录
ID:29055583
大小:195.50 KB
页数:12页
时间:2018-12-16
《2017-2018学年高中数学 模块复习精要(二)数列 新人教b版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、复习课(二) 数 列等差数列与等比数列的基本运算数列的基本运算以小题出现具多,但也可作为解答题第一步命题,主要考查利用数列的通项公式及求和公式,求数列中的项、公差、公比及前n项和等,一般试题难度较小.1.等差数列(1)通项公式:an=a1+(n-1)d.(2)前n项和公式:Sn=na1+d=.(3)前n项和公式Sn=n2+n视为关于n的一元二次函数,开口方向由公差d的正负确定;Sn=中(a1+an)视为一个整体,常与等差数列性质结合利用“整体代换”思想解题.2.等比数列(1)通项公式:an=a1qn-1.(2)前n项和公式:Sn=(3)等比数列{an},Sn
2、为其前n项和,则Sn可表示为Sn=k·qn+b,(k≠0,且k+b=0).[典例] 成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5.(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列是等比数列.[解] (1)设成等差数列的三个正数分别为a-d,a,a+d.依题意,得a-d+a+a+d=15,解得a=5.所以{bn}中的b3,b4,b5依次为7-d,10,18+d.依题意,(7-d)(18+d)=100,解得d=2或d=-13(舍去),∴b3=5,公比q=2,故bn=5·
3、2n-3.(2)证明:由(1)知b1=,公比q=2,∴Sn==5·2n-2-,则Sn+=5·2n-2,因此S1+=,==2(n≥2).∴数列是以为首项,公比为2的等比数列.[类题通法]在等差(或等比)数列中,首项a1与公差d(或公比q)是两个基本量,一般的等差(或等比)数列的计算问题,都可以设出这两个量求解.在等差数列中的五个量a1,d,n,an,Sn或等比数列中的五个量a1,q,n,an,Sn中,可通过列方程组的方法,知三求二.在利用Sn求an时,要注意验证n=1是否成立.1.在等比数列{an}中,Sn是它的前n项和,若a2·a3=2a1,且a4与2a7的
4、等差中项为17,则S6=( )A. B.16C.15D.解析:选A 设{an}的公比为q,则由等比数列的性质知,a2a3=a1a4=2a1,则a4=2;由a4与2a7的等差中项为17知,a4+2a7=2×17=34,得a7=16.∴q3==8,即q=2,∴a1==,则S6==,故选A.2.已知等差数列{an}的前n项和为Sn,且a3+a8=13,S7=35,则a7=________.解析:设等差数列{an}的公差为d,则由已知得(a1+2d)+(a1+7d)=13,S7==35.联立两式,解得a1=2,d=1,∴a7=a1+6d=8.答案
5、:83.已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{an}的通项公式;(2)求a1+a4+a7+…+a3n-2.解:(1)设{an}的公差为d.由题意,得a=a1a13,即(a1+10d)2=a1(a1+12d).于是d(2a1+25d)=0.又a1=25,所以d=-2或0(舍去).故an=-2n+27.(2)令Sn=a1+a4+a7+…+a3n-2.由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而Sn=(a1+a3n-2)=(-6n+56)=-3n2+28n.等差、等
6、比数列的性质及应用等差、等比数列的性质主要涉及数列的单调性、最值及其前n项和的性质.利用性质求数列中某一项等,试题充分体现“小”“巧”“活”的特点,题型多以选择题和填空题的形式出现,一般难度较小.等差数列的性质等比数列的性质若m+n=p+q(m,n,p,q∈N+),则am+an=ap+aq.特别地,若m+n=2p,则am+an=2ap若m+n=p+q(m,n,p,q∈N+),则am·an=ap·aq.特别地,若m+n=2p,则am·an=aam,am+k,am+2k,…仍是等差数列,公差为kdam,am+k,am+2k,…仍是等比数列,公比为qk若{an},
7、{bn}是两个项数相同的等差数列,则{pan+qbn}仍是等差数列若{an},{bn}是两个项数相同的等比数列,则{pan·qbn}仍是等比数列Sm,S2m-Sm,S3m-S2m,…是等差数列Sm,S2m-Sm,S3m-S2m,…是等比数列(q≠-1或q=-1且k为奇数)若数列{an}项数为2n,则S偶-S奇=nd,=若数列{an}项数为2n,则=q若数列{an}项数为2n+1,则S奇-S偶=an+1,=若数列{an}项数为2n+1,则=q[典例] (1)已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示数列{an}的前n项
8、和,则使得Sn取得最大值的n是( )A.21B.2
此文档下载收益归作者所有