资源描述:
《2017-2018学年高中数学 第二章 圆锥曲线与方程质量评估检测 新人教b版选修2-1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章 圆锥曲线与方程质量评估检测时间:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知抛物线的方程为y=2ax2,且过点(1,4),则焦点坐标为( )A. B.C.(1,0)D.(0,1)解析:∵抛物线过点(1,4),∴4=2a,∴a=2,∴抛物线方程为x2=y,焦点坐标为.答案:A2.已知0<θ<,则双曲线C1:-=1与C2:-=1的( )A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:先确定实半轴和虚半轴的长,再求出半焦距.双曲线C1和C2
2、的实半轴长分别是sinθ和cosθ,虚半轴长分别是cosθ和sinθ,则半焦距c都等于1,故选D.答案:D3.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A.B.C.D.解析:设双曲线的标准方程为-=1(a>0,b>0),所以其渐近线方程为y=±x,因为点(4,-2)在渐近线上,所以=,根据c2=a2+b2,可得=,解得e2=,e=.答案:D4.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A.+=1B.+=1C.+=1或+=1D.+=1解析:2c=6,∴c=3,∴2a+2
3、b=18,a2=b2+c2,∴∴椭圆方程为+=1或+=1.答案:C5.已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为( )A.1B.0C.-2D.-解析:设点P(x0,y0),则x-=1,由题意得A1(-1,0),F2(2,0),则·=(-1-x0,-y0)·(2-x0,-y0)=x-x0-2+y,由双曲线方程得y=3(x-1),故·=4x-x0-5(x0≥1),可得当x0=1时,·有最小值-2,故选C.答案:C6.已知F是抛物线y=x2的焦点,P是该抛物线上的动点,则线段PF中点的轨迹方程是( )A.x2
4、=2y-1B.x2=2y-C.x2=y-D.x2=2y-2解析:设P(x0,y0),PF的中点为(x,y),则y0=x,又F(0,1),∴,∴,代入y0=x得2y-1=(2x)2,化简得x2=2y-1,故选A.答案:A7.抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是( )A.B.C.1D.解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为x-y=0或x+y=0,则焦点到渐近线的距离d1==或d2==.答案:B8.直线y=x+b与抛物线x2=2y交
5、于A、B两点,O为坐标原点,且OA⊥OB,则b=( )A.2B.-2C.1D.-1解析:设A(x1,y1),B(x2,y2),联立方程组消去y,得x2-2x-2b=0,所以x1+x2=2,x1x2=-2b,y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2=b2,又OA⊥OB,∴x1x2+y1y2=0,即b2-2b=0,解得b=0(舍)或b=2.答案:A9.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为( )A.-=1B.-=1C.-=1D.-=1解析:因为
6、双曲线-=1(a>0,b>0)的一个焦点在抛物线y2=24x的准线上,所以F(-6,0)是双曲线的左焦点,即a2+b2=36,又双曲线的一条渐近线方程是y=x,所以=,解得a2=9,b2=27,所以双曲线的方程为-=1,故选B.答案:B10.若动圆圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过定点( )A.(4,0)B.(2,0)C.(0,2)D.(0,-2)解析:抛物线y2=8x上的点到准线x+2=0的距离与到焦点(2,0)的距离相等,故动圆必过焦点(2,0).答案:B11.设圆锥曲线Γ的两个焦点分别为F1,F2.若曲线Γ上存
7、在点P满足
8、PF1
9、∶
10、F1F2
11、∶
12、PF2
13、=4∶3∶2,则曲线Γ的离心率等于( )A.或B.或2C.或2D.或解析:设圆锥曲线的离心率为e,由
14、PF1
15、∶
16、F1F2
17、∶
18、PF2
19、=4∶3∶2,知①若圆锥曲线为椭圆,由椭圆的定义,则有e===;②若圆锥曲线为双曲线,由双曲线的定义,则有e===.综上,所求的离心率为或.故选A.答案:A12.已知椭圆C;+=1(a>b>0)的离心率为.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为( )A.+=1B.+=1C.+=1D.+=1解析:利用椭圆
20、离心率的概念和双曲线渐近线求法求解.∵椭圆的离心率为,∴==,∴a=2b.∴椭圆方程为x2+4y2=4b2.