欢迎来到天天文库
浏览记录
ID:28933612
大小:117.00 KB
页数:4页
时间:2018-12-15
《九年级数学上册 第22章 二次函数导学案3 (新版)新人教版 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数【学习目标】1.理解二次函数的概念;掌握二次函数的图像和性质以及抛物线的平移规律;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会用待定系数法求二次函数的解析式;4.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值。【学习重点】二次函数的概念、图像和性质;二次函数解析式的确定【课堂学习】【合作探究·释疑】一、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1
2、、下列函数中,是二次函数的是.①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x;⑤y=-2x-1;⑥y=mx2+nx+p;⑦y=错误!未找到引用源。;⑧y=-5x。2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4秒时,该物体所经过的路程为。3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。4、若函数y=(m-2)xm-2+5x+1是关于的二次函数,则m的值为。6、已知函数y=(m-1)xm2+1+5x-3是二
3、次函数,求m的值。二、二次函数的对称轴、顶点、最值(技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k;如果解析式为一般式y=ax2+bx+c则最值为1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c=.3.抛物线y=x2+3x的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为()A.B.C.D.5.若直线y=ax+b不经过二、四象限,则抛
4、物线y=ax2+bx+c()A.开口向上,对称轴是y轴B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴D.开口向上,对称轴平行于y轴6.已知抛物线y=x2+(m-1)x-的顶点的横坐标是2,则m的值是_.7.抛物线y=x2+2x-3的对称轴是。8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。9.当n=______,m=______时,函数y=(m+n)xn+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.10.已知二次函数y=x2-2ax+2a+3,当a
5、=时,该函数y的最小值为0.11.已知二次函数y=mx2+(m-1)x+m-1有最小值为0,则m=______。12.已知二次函数y=x2-4x+m-3的最小值为3,则m=。三、函数y=ax2+bx+c的图象和性质1.抛物线y=x2+4x+9的对称轴是。2.抛物线y=2x2-12x+25的开口方向是,顶点坐标是。3.试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式。4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=x2-2x+1;(2)y=-3x
6、2+8x-2;(3)y=-x2+x-45.把抛物线y=x2+bx+c的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x2-3x+5,试求b、c的值。6.把抛物线y=-2x2+4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。7.某商场以每台2500元进口一批彩电。如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大
7、利润是多少元?四、函数y=a(x-h)2的图象与性质1.填表:抛物线开口方向对称轴顶点坐标2.已知函数y=2x2,y=2(x-4)2,和y=2(x+1)2。(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。(2)分析分别通过怎样的平移。可以由抛物线y=2x2得到抛物线y=2(x-4)2和y=2(x+1)2?3.试写出抛物线y=3x2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。(1)右移2个单位;(2)左移个单位;(3)先左移1个单位,再右移4个单位。4.试说明函数y=(x-3)2的图象特
8、点及性质(开口、对称轴、顶点坐标、增减性、最值)。5.二次函数y=a(x-h)2的图象如图:已知a=,OA=OC,试求该抛物线的解析式。五、二次函数的增减性1.二次函数y=3x2-6x+5,当x>1时,y随x的增大而;当x<1时,y随x的增大而;当x=1时,函数有最值是。2.已知函数y=4x2-mx+5,当x>-2时,y随x的增大而增大;当x<-2时,y随x的增大而减少;则x=1时,y的值为。3.已知二次函数y=x2-(m+1
此文档下载收益归作者所有