欢迎来到天天文库
浏览记录
ID:28925812
大小:89.00 KB
页数:4页
时间:2018-12-15
《九年级数学 切线长定理教案 人教新课标版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、切线长定理教学设计 教学目标 1.理解切线长的概念,掌握切线长定理; 2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想. 3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度. 教学重点: 切线长定理是教学重点 教学难点: 切线长定理的灵活运用是教学难点 教学过程设计: (一)观察、猜想、证明,形成定理 1、切线长的概念. 如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长. 引导学
2、生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. 2、观察 利用电脑变动点P的位置,观察图形的特征和各量之间的关系. 3、猜想 引导学生直观判断,猜想图中PA是否等于PB.PA=PB. 4、证明猜想,形成定理. 猜想是否正确。需要证明. 组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB. 想一想:根据图形,你还可以得到什么结论? ∠OPA=∠OPB(如图)等. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心
3、和这一点的连线平分两条切线的夹角. 5、归纳: 把前面所学的切线的5条性质与切线长定理一起归纳切线的性质 6、切线长定理的基本图形研究 如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C (1)写出图中所有的垂直关系; (2)写出图中所有的全等三角形; (3)写出图中所有的相似三角形; (4)写出图中所有的等腰三角形. 说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础. (二)应用、归纳、反思 例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,
4、A和B是切点,BC是直径. 求证:AC∥OP. 分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB. 从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得证法. 证法.如图.连结AB. PA,PB分别切⊙O于A,B ∴PA=PB∠APO
5、=∠BPO ∴OP⊥AB 又∵BC为⊙O直径 ∴AC⊥AB ∴AC∥OP(学生板书) 反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力. 例2、圆的外切四边形的两组对边的和相等. (分析和解题略) 反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补. P120练习: 练习1 填空 如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________ 练习2 已知:在
6、△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长. 分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x,y,z的方程组,解方程组便可求出结果. (解略) 反思:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力. (三)小结 1、提出问题学生归纳 (1)这节课学习的具体内容; (2)学习用的数学思想方法; (3)应注意
7、哪些概念之间的区别? 2、归纳基本图形的结论 3、学习了用代数方法解决几何问题的思想方法. (四)作业 教材P131习题7.4A组1.(1),2,3,4.B组1题.
此文档下载收益归作者所有