函数奇偶性--教学设计

函数奇偶性--教学设计

ID:28750181

大小:367.50 KB

页数:7页

时间:2018-12-13

函数奇偶性--教学设计_第1页
函数奇偶性--教学设计_第2页
函数奇偶性--教学设计_第3页
函数奇偶性--教学设计_第4页
函数奇偶性--教学设计_第5页
资源描述:

《函数奇偶性--教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《函数奇偶性》教学设计富源县第六中学宋泽顺教材分析:在学习函数奇偶性之前,已经学习了函数的概念及函数的图像,使得学生具备了利用函数解析式研究数形性质的基本知识,同时联系初中所学的图形中心对称和轴对称。但只是从图象上直观观察图象的对称,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.奇偶性的证明是学生在函数内容中接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,还没有意识到它的重要性,所以奇偶性的证明自然就

2、是教学中的难点.学情分析:学生在初中学习了二次函数和反比例函数,学生已经知道这两个图象的对称性,而且有了前面函数的概念及表示法,为准确描述自变量互为相反数时对应的函数值的关系扫清了障碍,可顺利得出函数奇偶性的定义。该班的学生较活跃,课堂上发言积极,并且学生已经学习了函数的概念、图像和对称的概念,大部分学生都能在教师的诱导下发现规律,达到掌握的目的。一、教学目标:   知识与技能: 结合具体函数了解奇偶性的含义,能利用函数的图像理解奇函数、偶函数;能判断一些简单函数的奇偶性。   过程与方法: 体验奇函数、偶函数概念形成的过程

3、,体会由形及数、数形结合的数学思想,并学会由特殊到一般的归纳推理的思维方法。   情感、态度、价值观: 通过绘制和展示优美的函数图像,可以陶冶我们的情操,通过概念的形成过程,培养我们探究、推理的思维能力。二、教学重点、难点:重点:奇偶性概念的理解及应用。难点:奇偶性的判断与应用。三、教学方法:探究式、启发式。四、课堂类型:新授课五、教学媒体使用:多媒体(计算机、实物投影)六、教学过程:教学环节教学内容师生互动设计意图问题引领复习在初中学习的轴对称图形和中心对称图形的定义教师提出问题,学生回答.为学生认识奇、偶函数的图象特征做

4、好准备.自主探究1.要求学生同桌两人分别画出函数f(x)=x3与g(x)=x2的图象.2.多媒体屏幕上展示函数f(x)=x3和函数g(x)=x2的图象,并让学生分别求出x=±3,x=±2,x=±,…的函数值,同时令两个函数图象上对应的点在两个函数图象上闪现,让学生发现两个函数的对称性反映到函数值上具有的特性:f(–x)=–f(x),g(–x)=g(x).然后通过解析式给出证明,进一步说明这两个特性对定义域内的任意一个x都成立.3.奇函数、偶函数的定义:奇函数:设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有f(–

5、x)=–f(x),则这个函数叫奇函数.偶函数:设函数y=1.教师指导,学生作图,学生作完图后教师提问:观察我们画出的两个函数的图象,分别具有怎样的对称性?学生回答:f(x)=x3关于原点成中心对称图形;g(x)=x2关于y轴成轴对称图形.2.老师边让学生计算相应的函数值,边操作课件,引导学生发现规律,总结规律,然后要求学生给出证明;学生通过观察和运算逐步发现两个函数具有的不同特征:f(–x)=–f(x),g(–x)=–g(x).3.教师引导归纳:这时我们称函数f(x)=x3这样的函数为奇函数,像函数g(x)=x2这样的函数为

6、偶函数,请同学们根据对奇函数和偶函数的初步认识加以推广,给奇函数和偶函数分别下一个定义.学生讨论后回答,然后老师引导使定义完善.在屏幕展示奇函数和偶函数的定义.1.要求学生动手作图以锻炼学生的动手实践能力,为下一步问题的提出做好准备.并通过问题来引导学生从形的角度认识两个函数各自的特征.2.通过特殊值让学生认识两个函数各自对称性实质:是自变量互为相反数时,函数值互为相反数和相等这两种关系.3.通过引例使学生对奇函数和偶函数的形和数的特征有了初步的认识,此时再让学生给奇函数和偶函数下定义应是水到渠成.g(x)的定义域为D,如果

7、对D内的任意一个x,都有g(–x)=–g(x),则这个函数叫做偶函数.老师:根据定义,哪些同学能举出另外一些奇函数和偶函数的例子?学生:f(x)=,f(x)=–x6–4x4,….合作交流(1)强调定义中“任意”二字,说明函数的奇偶性在定义域上的一个整体性质,它不同于函数的单调性 .(2)奇函数与偶函数的定义域的特征是关于原点对称.(3)奇函数与偶函数图象的对称性:如果一个函数是奇函数,则这个函数的图象以坐标原点为对称中心的中心对称图形.反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.如果一个

8、函数是偶函数,则它的图形是以y轴为对称轴的轴对称图形;反之,如果一个函数的图象关于y轴对称,则这个函数是偶函数.教师设计以下问题组织学生讨论思考回答.问题1:奇函数、偶函数的定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别?问题2:–x与x在几何上有何关系?具有奇偶

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。