资源描述:
《求解非线性约束优化问题的一类lagrange算法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、(NLP)NLPKKTNLPKKTKKTKKT1.KKTKKTLagrangeLagrange2.LagrangeLagrangeKKTAbstractTheconstrainednonlinearprogrammingproblems(NLP)isaveryimportantcompo-nentpartinoperationsresearch,Ithaswideapplicationinnaturalscience,engineeringandeconomics.ThetypicalmethodforsolvingNLPhavefeasibledire
2、ctionmethod,penaltyfunctionmethod,multipliermethod,sequentialquadraticprogrammingandsoon.Inrecentyears,themethodthatalocalminimumofNLPisobtainedbysolvingKKT-systemsforNLPbecomesoneoftheefficientnumericalmethodsforNLP.ThemainideaofthemethodistoreformulatetheKKT-conditionsforNLPassmo
3、othnonlinearequations,thenaKKT-pointforNLPisobtainedbyusingclassicalnumericalmethodsfortheproblem.ThemethodsinthisthesisaKKT-pointisobtained,butthedifferencetrainofthoughttosolvetheproblem.Thespecificcontentsareasfollows:1.Thefirstweconstructanewauxiliaryfunctioncontainingparameter,
4、usingthegoodpropertysofthisfunction.Theconstraintoptimizationproblemswithinequalityconstraintsintoequivalentconversion.ThisconversionnotonlyensuretheKKT-conditionofthenewproblemsandtheKKT-conditionoftheoriginalproblemswiththesolution,butalsotheintroductionofparametersmaketheLagra
5、ngefunctionofthenewproblemswithapenaltyfunction.Usingthischaracteristic,weproposeanewLagrangefunctionmethodandtheglobalconvergenceofthemethodcanalsobeproved.Thenumericalresultsshowthatthealgorithmhasgoodadaptabilityandstability.2.Thefirstequivalenttotheequalityconstraintsareconver
6、tedintotwoinequalityconstraints,thenusingthemethodinthelastchapter,turningthemintonewinequalityconstraints,Accordingtothecharacteristicsofthefunction,thetwoinequalityconstraintsfurtherequivalentlyconvertedintoaninequalityconstraint,sothecontainsequalitycon-strainedproblemintotheO
7、ptimizationproblemswhichonlyhaveinequalityconstraints.Finally,themethodofLagrangefunctionforgeneralconstrainedoptimizationproblemsisgiven.KeywordsLagrangemultipliermethod;KKT-system;Nonlinearconstraints;Exponentialfunction..........................................................
8、...........1§1.1........................