欢迎来到天天文库
浏览记录
ID:28334731
大小:3.14 MB
页数:46页
时间:2018-12-09
《广东省高考数学考点分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、欢迎光临《中学数学信息网》zxsx127@163.com题型解题方法与策略1、选择题的解法:从解题过程来说,完成选择题的解答必须突出五个环节:“读题------记号------推理判断-------比较------选择”数学选择题的求解,一般有两种思路:一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件。选择题属容易题(个别题为中档题),解题的基本原则是:“小题不可大做”。由于选择题提供备选答案,又不要求写出解题过程,因此,出现了一些特有的解题方法,在解选择题是很适用。1).直接求解法涉及数学定义、定理、法则、公式的应用的问题,常通过直接演算得出
2、结果,与选择支进行比照,作出选择,称之直接求解法.2).直接判断法涉及有关数学概念的判断题,需依据对概念的全面、正确、深刻的理解而作出判断和选择.3)、特殊化法(即特例判断法)4)、排除法(筛选法)5)、数形结合法(图象法)根据题目特点,画出图象,得出结论。6)、代入检验法将选择支中给出的答案(尤其关注分界点),代入题干逐一检验,从而确定正确答案的方法为验证法。7)、推理分析法通过对四个选择支之间的逻辑关系的分析,达到否定谬误支,肯定正确支的方法,称之为逻辑分析法,例如:若“(A)真Þ(B)真”,则(A)必假,否则将与“只有一个选择支正确”的前提相矛盾.2、填空题的解法:它和选择题同
3、属客观性试题,它们有许多共同特点。3、解答题的类型及解法:(一)三角函数1、应用诱导公式,重点是“函数名称”与“正负号”的正确判断,一般常用“奇变偶不变,符号看象限”的口诀确定三角函数名称和判定三角函数值的符号。2、在运用两角和、两角差、二倍角的相关公式时,注意观察角之间的关系,公式应正确、熟练地记忆与应用,并注意总结公式的应用经验,对一些公式不仅会用,还会逆用,变形用,如的变形,二倍角公式的变形用,等。3、常用的三角变换①角的变换:主要是将三角函数中的角恰当变形,以利于应用公式和已知条件:如2α=(α+β)+(α-β)2β=(α+β)-(α-β)α=[(α+β)/2]+[(α-β)
4、/2]β=[(α+β)/2]-[(α-β)/2]2α=2α/2=(α+β-β)②函数名称变换:主要是切割化弦、弦切互换、正余弦互换、正余切互换。③公式的活用主要有公式的正用、逆用、变形用。通过适当的三角变换,以减少函数种类及项数,降低次数,使一般角化为特殊角。注意切割化弦通分、降幂和升幂等方法的使用,充分利用三角函数值的变式,如,1=tan450,-1=tan1350,=tan600,=cos600或=sin300,sinx+cosx=2sin(x+),创造条件使用公式。4、三角函数的图像与性质《中学数学信息网》系列资料WWW.ZXSX.COM版权所有@《中学数学信息网》欢迎光临《中
5、学数学信息网》zxsx127@163.com⑴“五点法”画函数y=Asin(ωx+φ)(A≠0,ω>0)的简图,掌握选取起关键作用的五个点的方法:设X=ωx+φ,由取0,π/2,π,3π/2,2π来求相应的x值,及对应的y值,再描点作图。⑵掌握函数y=Asin(ωx+φ)的图像与函数y=sinx的图像之间互相交换,提倡先平移后压缩(伸展),但先压缩(伸展)后平移也经常出现现在题目中,所以也必须熟练掌握,无论是哪种变换,切记每一个变换总是对字母x而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。另注意能以向量的形式表示平移⑶给出图像确定解析式的题型:A、B与最值有关,ω与周
6、期有关;φ从寻找“五点法”中的第二个零点且最靠近Y轴的最高点作为突破口,ωx+φ=π/2⑷求定义域是研究其他性质首先应要考虑的方面之一,既要注意一般函数求定义域的规律,又要注意三角函数本身的特有属性,例如题中出现tanx,则一定有x≠k+(π/2)(k∈Z),不要遗忘.⑸求值域离不开三角函数式的的恒等变形,所以要掌握六种三角函数的定义域、值域、单调性,还要熟练掌握形如:sinx±cosx、sinx·cosx、sin2x+cos2x、sin3x+cos3x等之间的变换,以及三角公式的正逆用和变形用。⑹三角函数单调区间的确定,一般先将函数式化为基本三角函数的标准式,然后通过同解变形或利用
7、数形结合的方法求解,若对函数利用描点画图,则根据图形的直观性可迅速获解。判断函数的奇偶性,应首先判定函数定义域关于原点的对称性。三角函数最小正周期的求法,主要是通过恒等变形转化为基本三角函数类型或形如y=Asin(ωx+φ)的形式,另外还有图像和定义法。⑺函数y=Asin(ωx+φ)的图像是中心对称图形。其对称中心是图像与x轴的交点,同时也是轴对称图形,对称轴是经过图像的波峰顶或波谷底且与x轴垂直的直线。(二)立体几何解答题的解法[1]空间角的计算主要步骤
此文档下载收益归作者所有