欢迎来到天天文库
浏览记录
ID:27974887
大小:573.50 KB
页数:7页
时间:2018-12-07
《1汽车做匀变速运动,追赶及相遇问题.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、汽车做匀变速运动,追赶及相遇问题匀变速直线运动的概念 1、匀变速直线运动的定义:沿着一条直线且加速度不变的运动,叫做匀变速直线运动。其图像是一条倾斜的直线。如果物体的速度随时间均匀增加,为匀加速直线运动,如果物体速度随时间均匀减小,为匀减速直线运动。 2、匀变速直线运动的特点:匀变速直线运动的加速度的大小和方向均不随时间变化。 3、匀变速直线运动也是一种理想运动过程。 4、当加速度和速度同向时,物体做匀加速直线运动,当加速度和速度反向时,物体做匀减速直线运动。 5、物体只在重力作用下,从静止开始下落的运动叫自由落体运动,自由落体运动是初速度为0的匀加速直
2、线运动。6、在同一地点,一切物体自由下落的加速度都相同,这个加速度叫自由落体加速度,也叫重力加速度,通常用g表示。(在人教版新课标高一中,如不特殊要求,g通常取9.8ms^2 7、第n秒的初速度就是第(n-1)秒的末速度,注意二者指的是同一时刻。◎知识梳理在两物体同直线上的追及、相遇或避免碰撞问题中关键的条件是:两物体能否同时到达空间某位置.因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系解出.(1)追及追和被追的两者的速度相等常是能追上、追不上、二者距离有极值的临界条件.如匀减速运动的物体追从不同地点出发同向的匀速运动的物体时,若二者
3、速度相等了,还没有追上,则永远追不上,此时二者间有最小距离.若二者相遇时(追上了),追者速度等于被追者的速度,则恰能追上,也是二者避免碰撞的临界条件;若二者相遇时追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时二者的距离有一个较大值.再如初速度为零的匀加速运动的物体追赶同一地点出发同向匀速运动的物体时,当二者速度相等时二者有最大距离,位移相等即追上.(2)相遇同向运动的两物体追及即相遇,分析同(1).相向运动的物体,当各自发生的位移的绝对值的和等于开始时两物体间的距离时即相遇.【例6】一列客车以v1的速度前进,司机发现前面同一轨道上有一列
4、货车正以v2(v25、则不会相撞.以两物体运动的位移关系、时间关系、速度关系建立方程是解答追及相遇问题的最基本思路.特别注意第三种解法,这种巧取参考系,使两者之间的运动关系更简明的方法是要求同学们有一定的分析能力后才能逐步学会应用的【例7】在铁轨上有甲、乙两列列车,甲车在前,乙车在后,分别以速度v1=15m/s),v2=40m/s做同向匀速运动,当甲、乙间距为1500m时,乙车开始刹车做匀减速运动,加速度大小为O.2m/s2,问:乙车能否追上甲车?【分析与解答】由于乙车速度大于甲车的速度,因此,尽管乙车刹车后做匀减速直线运动,速度开始减小,但其初始阶段速度还是比甲车的大,两车的距离还是6、在减小,当乙车的速度减为和甲车的速度相等时,乙车的位移大于甲车相对乙车初始位置的位移,则乙车就一定能追上甲车,设乙车速度减为v1=15m/s时,用的时间为t,则有V1=v2-att=(v2-v1)/a=125s在这段时间里乙车的位移为S2==3437.5m在该时间内甲车相对乙车初始位置的位移为S1=1500十v1t=3375m因为s2>s1,所以乙车能追上甲车。【例8】火车以速度v1匀速行驶,司机发现前方同轨道上相距s处有另一列火车沿同方向以速度v2(对地、且v1>v2)做匀速运动,司机立即以加速度a紧急刹车.要使两车不相撞,a应满足什么条件?【分析与解答】:此题7、有多种解法.解法一:两车运动情况如图所示,后车刹车后虽做匀减速运动,但在其速度减小至和v2相等之前,两车的距离仍将逐渐减小;当后车速度减小至小于前车速度,两车距离将逐渐增大.可见,当两车速度相等时,两车距离最近.若后车减速的加速度过小,则会出现后车速度减为和前车速度相等之前即追上前车,发生撞车事故;若后车减速的加速度过大,则会出现后车速度减为和前车速度相等时仍未追上前车,根本不可能发生撞车事故;若后车加速度大小为某值时,恰能使两车在速度相等时后车追上前车,这正是两车恰不相撞的临界状态,此时对应的加速度即为两车不相撞的最小加速度.综上分析可知,两车恰不相撞时应满足下8、列两方程:
5、则不会相撞.以两物体运动的位移关系、时间关系、速度关系建立方程是解答追及相遇问题的最基本思路.特别注意第三种解法,这种巧取参考系,使两者之间的运动关系更简明的方法是要求同学们有一定的分析能力后才能逐步学会应用的【例7】在铁轨上有甲、乙两列列车,甲车在前,乙车在后,分别以速度v1=15m/s),v2=40m/s做同向匀速运动,当甲、乙间距为1500m时,乙车开始刹车做匀减速运动,加速度大小为O.2m/s2,问:乙车能否追上甲车?【分析与解答】由于乙车速度大于甲车的速度,因此,尽管乙车刹车后做匀减速直线运动,速度开始减小,但其初始阶段速度还是比甲车的大,两车的距离还是
6、在减小,当乙车的速度减为和甲车的速度相等时,乙车的位移大于甲车相对乙车初始位置的位移,则乙车就一定能追上甲车,设乙车速度减为v1=15m/s时,用的时间为t,则有V1=v2-att=(v2-v1)/a=125s在这段时间里乙车的位移为S2==3437.5m在该时间内甲车相对乙车初始位置的位移为S1=1500十v1t=3375m因为s2>s1,所以乙车能追上甲车。【例8】火车以速度v1匀速行驶,司机发现前方同轨道上相距s处有另一列火车沿同方向以速度v2(对地、且v1>v2)做匀速运动,司机立即以加速度a紧急刹车.要使两车不相撞,a应满足什么条件?【分析与解答】:此题
7、有多种解法.解法一:两车运动情况如图所示,后车刹车后虽做匀减速运动,但在其速度减小至和v2相等之前,两车的距离仍将逐渐减小;当后车速度减小至小于前车速度,两车距离将逐渐增大.可见,当两车速度相等时,两车距离最近.若后车减速的加速度过小,则会出现后车速度减为和前车速度相等之前即追上前车,发生撞车事故;若后车减速的加速度过大,则会出现后车速度减为和前车速度相等时仍未追上前车,根本不可能发生撞车事故;若后车加速度大小为某值时,恰能使两车在速度相等时后车追上前车,这正是两车恰不相撞的临界状态,此时对应的加速度即为两车不相撞的最小加速度.综上分析可知,两车恰不相撞时应满足下
8、列两方程:
此文档下载收益归作者所有