欢迎来到天天文库
浏览记录
ID:27974655
大小:32.50 KB
页数:6页
时间:2018-12-07
《2.3《圆的切线的判定和性质》.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、切线的判定和性质 教学目标: 1、使学生深刻理解切线的判定定理性质定理及推论,并能初步运用它解决有关问题; 2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力; 3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.教学重点:1.切线的判定定理和切线判定的方法2.切线的性质定理和推论1、推论2.教学难点:1.切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.2.利用“反证法”来证明切线的性质定理. 教学过程设计 (一)复习、发现问
2、题 1.直线与圆的三种位置关系 在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系? 2、观察、提出问题、分析发现(教师引导) 图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢? 如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置. 发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方
3、法——切线的判定定理. (二)切线的判定定理: 1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线. 2、对定理的理解: 引导学生理解:①经过半径外端;②垂直于这条半径. 请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可. 图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端. 从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线. (三)切线的判定方法 教师组织学生归纳.切线的判定方法有三种: ①直线与圆有唯一公共点;②直线到圆心的距离等于该圆
4、的半径;③切线的判定定理. (四)应用定理,强化训练' 例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB. 求证:直线AB是⊙O的切线. 分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。 证明:连结0C ∵0A=0B,CA=CB,” ∴0C是等腰三角形0AB底边AB上的中线. ∴AB⊥OC. 直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线. 练习1判断下列命题是否正确. (1)经过半径外端的直线是圆的切线. (2)垂直于半径的直线是圆的切
5、线. (3)过直径的外端并且垂直于这条直径的直线是圆的切线. (4)和圆有一个公共点的直线是圆的切线. (5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切. 采取学生抢答的形式进行,并要求说明理由, 练习P32,1、2目的:使学生初步会应用切线的判定定理,对定理加深理解)(五)基本性质 1、观察:(组织学生,使学生从感性认识到理性认识) 2、归纳:(引导学生完成) (1)切线和圆有唯一公共点;(切线的定义) (2)切线和圆心的距离等于圆的半径; 猜想:圆的切线垂直于经过切点的半径. 引导学生应用“反证法”证明.分三步:
6、 (1)假设切线AT不垂直于过切点的半径OA, (2)同时作一条AT的垂线OM.通过证明得到矛盾,OM<OA这条半径.则有直线和圆的位置关系中的数量关系,得AT和⊙O相交与题设相矛盾. (3)承认所要的结论AT⊥AO. 切线的性质定理:圆的切线垂直于经过切点的半径. 指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直. 引导学生发现: 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂于切线的直线必经过圆心. 引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论: 如果一条直线具备下列三个条件中的
7、任意两个,就可推出第三个. (1)垂直于切线; (2)过切点; (3)过圆心. (二)归纳切线的性质 (1)切线和圆有唯一公共点;(切线的定义) (2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题) (3)切线垂直于过切点的半径;(切线的性质定理) (4)经过圆心垂直于切线的直线必过切点;(推论1) (5)经过切点垂直于切线的直线必过圆心.(推论2) (三)应用举例,强化训练. 例1、AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D. 求证:AC平分∠DAB. 引导学生分析:条件CD是⊙O的切线,
8、可得什么结论;由AD⊥CD,又可得什么. 证明:连结OC. ∴AC平分∠D
此文档下载收益归作者所有