17-18版 第7章 热点探究课4 立体几何中的高考热点问题.doc

17-18版 第7章 热点探究课4 立体几何中的高考热点问题.doc

ID:27972611

大小:403.00 KB

页数:19页

时间:2018-12-07

17-18版 第7章 热点探究课4 立体几何中的高考热点问题.doc_第1页
17-18版 第7章 热点探究课4 立体几何中的高考热点问题.doc_第2页
17-18版 第7章 热点探究课4 立体几何中的高考热点问题.doc_第3页
17-18版 第7章 热点探究课4 立体几何中的高考热点问题.doc_第4页
17-18版 第7章 热点探究课4 立体几何中的高考热点问题.doc_第5页
资源描述:

《17-18版 第7章 热点探究课4 立体几何中的高考热点问题.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、立体几何中的高考热点问题[命题解读] 1.立体几何初步是高考的重要内容,几乎每年都考查一个解答题,两个选择或填空题,客观题主要考查空间概念,三视图及简单计算;解答题主要采用“论证与计算”相结合的模式,即利用定义、公理、定理证明空间线线、线面、面面平行或垂直,并与几何体的性质相结合考查几何体的计算.2.重在考查学生的空间想象能力、逻辑推理论证能力及数学运算能力.考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法.热点1 线面位置关系与体积计算(答题模板)以空间几何体为载体,

2、考查空间平行与垂直关系是高考的热点内容,并常与几何体的体积计算交汇命题,考查学生的空间想象能力、计算与数学推理论证能力,同时突出转化与化归思想方法的考查,试题难度中等. (本小题满分12分)(2015·全国卷Ⅰ)如图1,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥EACD的体积为,求该三棱锥的侧面积.[思路点拨] (1)注意到四边形ABCD为菱形,联想到对角线垂直,从而进一步证线面垂直,面与面垂直;(2)根据几何体的体积求得底面菱形的边长,

3、计算侧棱,求出各个侧面的面积.[规范解答] (1)证明:因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BE.2分因为BD∩BE=B,故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.4分(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=x,GB=GD=.因为AE⊥EC,所以在Rt△AEC中,可得EG=x.6分由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=x.由已知得,三棱锥EACD的体积V三棱锥EACD=×·AC·GD·BE=x3=,故x=

4、2.9分从而可得AE=EC=ED=.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为.故三棱锥EACD的侧面积为3+2.12分[答题模板] 第一步:由线面垂直的性质,得线线垂直AC⊥BE.第二步:根据线面垂直、面面垂直的判定定理证明平面AEC⊥平面BED.第三步:利用棱锥的体积求出底面菱形的边长.第四步:计算各个侧面三角形的面积,求得四棱锥的侧面积.第五步:检验反思,查看关键点,规范步骤.[温馨提示] 1.在第(1)问,易忽视条件BD∩BE=B,AC⊂平面AEC,造成推理不严谨,导致扣分.2.正确的计算结果是得分的关键,本题在求三

5、棱锥的体积与侧面积时,需要计算的量较多,防止计算结果错误失分,另外对于每一个得分点的解题步骤一定要写全.阅卷时根据得分点评分,有则得分,无则不得分.[对点训练1] 如图2,在三棱柱ABCA1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.[解] (1)证明:在三棱柱ABCA1B1C1中,因为BB1⊥底面ABC,AB⊂平面ABC,所以BB1⊥AB.2分又因为AB⊥BC,BB1∩BC=B,

6、所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.4分(2)证明:取AB的中点G,连接EG,FG.因为G,F分别是AB,BC的中点,所以FG∥AC,且FG=AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,6分所以四边形FGEC1为平行四边形,所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.8分(3)因为AA1=AC=2,BC=1,AB⊥BC,所以AB==,10分所以三棱锥EABC的体积V=S△ABC·AA1=×××1×2=.12分热点2 平面

7、图形折叠成空间几何体先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量,是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向. 如图3,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现沿AE将三角形ADE向上折起,在折起的图形中解答下列问题:(1)在线段AB上是否存在一点K,使BC∥平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE⊥平

8、面ABCE,求证:平面BDE⊥平面ADE.[解] (1)如图,线段AB上存在一点K,且当AK=AB时,BC∥平面DFK.1分证明如下:设H为AB的中点,连接EH,则BC∥EH.∵

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。