人工智能三起三落,60年登上围棋之巅.doc

人工智能三起三落,60年登上围棋之巅.doc

ID:27838774

大小:1.89 MB

页数:22页

时间:2018-12-06

人工智能三起三落,60年登上围棋之巅.doc_第1页
人工智能三起三落,60年登上围棋之巅.doc_第2页
人工智能三起三落,60年登上围棋之巅.doc_第3页
人工智能三起三落,60年登上围棋之巅.doc_第4页
人工智能三起三落,60年登上围棋之巅.doc_第5页
资源描述:

《人工智能三起三落,60年登上围棋之巅.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、人工智能三起三落,60年登上围棋之巅  核心观点:  1.广义人工智能指通过计算机实现人的头脑思维所产生的效果,是对能够从环境中获取感知并执行行动的智能体的描述和构建;相对狭义的人工智能包括人工智能产业(包含技术、算法、应用等多方面的价值体系)、人工智能技术(包括凡是使用机器帮助、代替甚至部分超越人类实现认知、识别、分析、决策等功能)  2.工业革命使手工业自动化,机器学习则使机器本身自动化;开源环境大幅降低人工智能领域的入门技术门槛;视觉感知逐步实现商用价值,视觉认知仍有待探索  3.国家政策鼎力支持,指出要发展人工智能达到世界顶

2、级水平,但人工智能道德与威胁问题关注较少  4.未来,事物的完整行为规划或事项决策的发展空间较大;前沿算法之外,商业壁垒有赖于产品、服务、市场等综合建设  5.未来不会出现岗位短缺,技术革命将提高社会整体福利;人工智能的核心价值在于提效降本、延续人类智慧  一、人工智能行业概述  通过机器实现人的头脑思维,使其具备感知、决策与行动力  广义上的人工智能泛指通过计算机实现人的头脑思维所产生的效果,通过研究和开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统所构建而成的,其构建过程中综合了计算机科学、数学、生理学、哲学等内容。

3、形象来说,人工智能可理解为由不同音符组成的音乐,而不同音符是由不同的乐器所奏响的,最终实现传递演奏者内心所想与头脑所思的效果。本篇报告将从人工智能技术、应用、产业等维度进行探讨,其中,人工智能技术包括凡是使用机器帮助、代替甚至部分超越人类实现认知、识别、分析、决策等功能,而产业则指包含技术、算法、应用等多方面的价值体系。    人工智能三起三落,60年登上围棋之巅  20世纪50年代到70年代初,人们认为如果能赋予机器逻辑推理能力,机器就能具有智能,人工智能研究处于“推理期”。当人们意识到人类之所以能够判断、决策,除了推理能力外,还

4、需要知识,人工智能在20世纪70年代进入了“知识期”,大量专家系统在此时诞生。随着研究向前进展,专家发现人类知识无穷无尽,且有些知识本身难以总结后交给计算机,于是一些学者诞生了将知识学习能力赋予计算机本身的想法。发展到20世纪80年代,机器学习真正成为一个独立的学科领域、相关技术层出不穷,深度学习模型以及AlphaGo增强学习的雏形-感知器-均在这个阶段得以发明。随后由于早期的系统效果的不理想,美国、英国相继缩减经费支持,人工智能进入低谷。80年代初期,人工智能逐渐成为产业,但又由于5代计算机的失败再一次进入低谷。2010年后,相继

5、在语音识别、计算机视觉领域取得重大进展,围绕语音、图像等人工智能技术的创业大量涌现,从量变实现质变。    工业革命使手工业自动化,机器学习则使机器本身自动化  将样本数据输入计算机,一般算法会利用数据进行计算然后输出结果,机器学习的算法则大为不同,输入的是数据和想要的结果,输出的则为算法模型,即把数据转换成结果的算法模型。通过机器学习,计算机能够自己生成模型,进而提供相应的判断,达到某种人工智能的结果的实现。因此,在数据的“初始表示”(如图像的“像素”)与解决任务所需的“合适表示”相距甚远的时候,可尝试使用深度学习的方法。工业革命

6、使手工业自动化,而机器学习则使机器本身自动化。近几年掀起人工智能热潮的深度学习属于机器学习的一个子集,在思想和理论上并未显著超越二十世纪八十年代中后期神经网络学习的研究,但得益于海量数据的出现、计算能力的提升,原来复杂度很高的算法得以落地使用,并在边界清晰的领域获得比过去更精细的结果,大大推动了机器学习在工业实践中的应用。2018年2月,《麻省理工科技评论》揭晓2018年“全球十大突破性技术”榜单,GAN(对抗性神经网络,一种特殊的深度学习算法)位列其中。    国家政策鼎力支持,人工智能道德与威胁问题仍需思考  伴随政策支持的逐步

7、深入,中国政府将有力推动新一代人工智能技术的产业化与集成应用,促进新一代人工智能产业发展,推动制造强国和网络强国建设,助力实体经济转型升级,构筑我国人工智能发展的先发优势。此外,相比美国和英国,中国对人工智能的支持力度虽更大,但较少关注人工智能的道德伦理问题、是否在开发对社会切实有益的人工智能以及应当最小化技术进步所带来的威胁问题。    人工智能产业图谱    二、人工智能典型技术剖析  语音识别、自然语言处理、语音合成等技术  人类因为具有语言的能力而区别于其他物种,自然语言处理即研究人与计算机直接以自然语言的方式进行有效沟通的

8、各种理论和方法,涉及机器翻译、阅读理解、对话问答等,因为语言在词法、句法、语义等不同层面的不确定性及数据资源的有限性、背景知识的复杂性等各方面限制,自然语言处理技术仍有非常大的提升空间,仅在特定领域可取得较好的应用,鲁棒性存在大量挑战

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。