高考数学一轮复习第二章函数概念与基本初等函数第2课时函数的单调性与最值学案(含解析)

高考数学一轮复习第二章函数概念与基本初等函数第2课时函数的单调性与最值学案(含解析)

ID:27769969

大小:302.50 KB

页数:9页

时间:2018-12-05

高考数学一轮复习第二章函数概念与基本初等函数第2课时函数的单调性与最值学案(含解析)_第1页
高考数学一轮复习第二章函数概念与基本初等函数第2课时函数的单调性与最值学案(含解析)_第2页
高考数学一轮复习第二章函数概念与基本初等函数第2课时函数的单调性与最值学案(含解析)_第3页
高考数学一轮复习第二章函数概念与基本初等函数第2课时函数的单调性与最值学案(含解析)_第4页
高考数学一轮复习第二章函数概念与基本初等函数第2课时函数的单调性与最值学案(含解析)_第5页
资源描述:

《高考数学一轮复习第二章函数概念与基本初等函数第2课时函数的单调性与最值学案(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、函数的单调性与最值基础过关一、定义域:1.函数的定义域就是使函数式的集合.2.常见的三种题型确定定义域:①已知函数的解析式,就是.②复合函数f[g(x)]的有关定义域,就要保证内函数g(x)的域是外函数f(x)的域.③实际应用问题的定义域,就是要使得有意义的自变量的取值集合.二、值域:1.函数y=f(x)中,与自变量x的值的集合.2.常见函数的值域求法,就是优先考虑,取决于,常用的方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为法和法)例如:①形如y=,可采用法;②y=

2、,可采用法或法;③y=a[f(x)]2+bf(x)+c,可采用法;④y=x-,可采用法;⑤y=x-,可采用法;⑥y=可采用法等.三、单调性1.定义:如果函数y=f(x)对于属于定义域I内某个区间上的任意两个自变量的值x1、、x2,当x1、

3、在定义域内的某个区间上可导,①若,则f(x)在这个区间上是增函数;②若,则f(x)在这个区间上是减函数.四、单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)函数;2.若f(x)为增(减)函数,则-f(x)为;93.互为反函数的两个函数有的单调性;4.复合函数y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调相同,则f[g(x)]为,若f(x),g(x)的单调性相反,则f[g(x)]为.5.奇函数在其对称区间上的单调性,偶函数在其对称区间上的单调性.典型例题例1.求下列函数的定义域:(1)y

4、=;(2)y=;(3)y=.解:(1)由题意得化简得即故函数的定义域为{x

5、x<0且x≠-1}.(2)由题意可得解得故函数的定义域为{x

6、-≤x≤且x≠±}.(3)要使函数有意义,必须有即∴x≥1,故函数的定义域为[1,+∞).变式训练1:求下列函数的定义域:(1)y=+(x-1)0;(2)y=+(5x-4)0;(3)y=+lgcosx;解:(1)由得所以-3<x<2且x≠1.故所求函数的定义域为(-3,1)∪(1,2).(2)由得∴函数的定义域为(3)由,得借助于数轴,解这个不等式组,得函数的定义域为9例

7、2.设函数y=f(x)的定义域为[0,1],求下列函数的定义域.(1)y=f(3x);(2)y=f();(3)y=f(;(4)y=f(x+a)+f(x-a).解:(1)0≤3x≤1,故0≤x≤,y=f(3x)的定义域为[0,].(2)仿(1)解得定义域为[1,+∞).(3)由条件,y的定义域是f与定义域的交集.列出不等式组故y=f的定义域为.(4)由条件得讨论:①当即0≤a≤时,定义域为[a,1-a];②当即-≤a≤0时,定义域为[-a,1+a].综上所述:当0≤a≤时,定义域为[a,1-a];当-≤a≤0时,

8、定义域为[-a,1+a].变式训练2:若函数f(x)的定义域是[0,1],则f(x+a)·f(x-a)(0<a<)的定义域是()A.B.[a,1-a]C.[-a,1+a]D.[0,1]解:B例3.求下列函数的值域:(1)y=(2)y=x-;(3)y=.解:(1)方法一(配方法)∵y=1-而∴0<∴∴值域为.方法二(判别式法)由y=得(y-1)∵y=1时,1.又∵R,∴必须=(1-y)2-4y(y-1)≥0.∴∵∴函数的值域为.9(2)方法一(单调性法)定义域,函数y=x,y=-均在上递增,故y≤∴函数的值域为.方

9、法二(换元法)令=t,则t≥0,且x=∴y=-(t+1)2+1≤(t≥0),∴y∈(-∞,].(3)由y=得,ex=∵ex>0,即>0,解得-1<y<1.∴函数的值域为{y

10、-1<y<1}.变式训练3:求下列函数的值域:(1)y=;(2)y=

11、x

12、.解:(1)(分离常数法)y=-,∵≠0,∴y≠-.故函数的值域是{y

13、y∈R,且y≠-}.(2)方法一(换元法)∵1-x2≥0,令x=sin,则有y=

14、sincos

15、=

16、sin2

17、,故函数值域为[0,].方法二y=

18、x

19、·∴0≤y≤即函数的值域为.例4.若函数f(

20、x)=x2-x+a的定义域和值域均为[1,b](b>1),求a、b的值.解:∵f(x)=(x-1)2+a-.∴其对称轴为x=1,即[1,b]为f(x)的单调递增区间.∴f(x)min=f(1)=a-=1①f(x)max

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。