第二章曲面论

第二章曲面论

ID:27711112

大小:424.00 KB

页数:16页

时间:2018-12-05

第二章曲面论_第1页
第二章曲面论_第2页
第二章曲面论_第3页
第二章曲面论_第4页
第二章曲面论_第5页
资源描述:

《第二章曲面论》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.第二章曲面论§1曲面的概念1.求正螺面={u,u,bv}的坐标曲线.解u-曲线为={u,u,bv}={0,0,bv}+u{,,0},为曲线的直母线;v-曲线为={,,bv}为圆柱螺线.2.证明双曲抛物面={a(u+v),b(u-v),2uv}的坐标曲线就是它的直母线。证u-曲线为={a(u+),b(u-),2u}={a,b,0}+u{a,b,2}表示过点{a,b,0}以{a,b,2}为方向向量的直线;v-曲线为={a(+v),b(-v),2v}={a,b,0}+v{a,-b,2}表示过点(a,b,0)以{a,-b,2}为方向向量的直线。3.

2、求球面=上任意点的切平面和法线方程。解=,=任意点的切平面方程为即xcoscos+ycossin+zsin-a=0;法线方程为。4.求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面。......解椭圆柱面的参数方程为x=cos,y=asin,z=t,,。所以切平面方程为:,即xbcos+yasin-ab=0此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。5.证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。证 ,。切平面方程为: 。

3、与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,)。于是,四面体的体积为:是常数。§2曲面的第一基本形式1.求双曲抛物面={a(u+v),b(u-v),2uv}的第一基本形式.解,∴I=2。2.求正螺面={u,u,bv}......的第一基本形式,并证明坐标曲线互相垂直。解 ,,,,∴ I=,∵F=0,∴坐标曲线互相垂直。3.在第一基本形式为I=的曲面上,求方程为u=v的曲线的弧长。解由条件,沿曲线u=v有du=dv,将其代入得=,ds=coshvdv,在曲线u=v上,从到的弧长为。4.设曲面的第一基本形式为I=,求它上面

4、两条曲线u+v=0,u–v=0的交角。分析由于曲面上曲线的交角是曲线的内蕴量,即等距不变量,而求等距不变量只须知道曲面的第一基本形式,不需知道曲线的方程。解由曲面的第一基本形式知曲面的第一类基本量,,,曲线u+v=0与u–v=0的交点为u=0,v=0,交点处的第一类基本量为,,。曲线u+v=0的方向为du=-dv,u–v=0的方向为δu=δv,设两曲线的夹角为,则有cos=。5.求曲面z=axy上坐标曲线x=x,y=的交角.解曲面的向量表示为={x,y,axy},坐标曲线x=x的向量表示为={x,y,axy},其切向量={0,1,ax};坐标

5、曲线y=的向量表示为={x,,ax},其切向量={1,0,a},设两曲线x=x与y=的夹角为,则有cos=......6.求u-曲线和v-曲线的正交轨线的方程.解对于u-曲线dv=0,设其正交轨线的方向为δu:δv,则有Eduδu+F(duδv+dvδu)+Gdvδv=0,将dv=0代入并消去du得u-曲线的正交轨线的微分方程为Eδu+Fδv=0.同理可得v-曲线的正交轨线的微分方程为Fδu+Gδv=0.7.在曲面上一点,含du,dv的二次方程P+2Qdudv+R=0,确定两个切方向(du:dv)和(δu:δv),证明这两个方向垂直的充要条件

6、是ER-2FQ+GP=0.证明 因为du,dv不同时为零,假定dv0,则所给二次方程可写成为P+2Q+R=0,设其二根,,则=,+=……①又根据二方向垂直的条件知E+F(+)+G=0……②将①代入②则得ER-2FQ+GP=0.9.证明曲面的坐标曲线的二等分角线的微分方程为E=G.证 用分别用δ、、d表示沿u-曲线,v-曲线及其二等分角线的微分符号,即沿u-曲线δu0,δv=0,沿v-曲线u=0,v0.沿二等分角轨线方向为du:dv,根据题设条件,又交角公式得,即。展开并化简得E(EG-)=G(EG-),而EG->0,消去EG-得坐标曲线的二等

7、分角线的微分方程为E=G.......9.设曲面的第一基本形式为I=,求曲面上三条曲线u=v,v=1相交所成的三角形的面积。解三曲线在平面上的图形(如图)所示。曲线围城的三角形的面积是S==2=2==。10.求球面=的面积。解=,=E==,F==0,G==.球面的面积为:S=.11.证明螺面={ucosv,usinv,u+v}和旋转曲面={tcos,tsin,}(t>1,0<<2)之间可建立等距映射=arctgu+v,t=.分析根据等距对应的充分条件,要证以上两曲面可建立等距映射=arctgu+v,t=,可在一个曲面譬如在旋转曲面上作一参数变

8、换使两曲面在对应点有相同的参数,然后证明在新的参数下,两曲面具有相同的第一基本形式.......证明螺面的第一基本形式为I=2+2dudv+(+1),旋转曲面的第一

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。