利率期限结构模型

利率期限结构模型

ID:27234342

大小:921.50 KB

页数:52页

时间:2018-12-01

利率期限结构模型_第1页
利率期限结构模型_第2页
利率期限结构模型_第3页
利率期限结构模型_第4页
利率期限结构模型_第5页
资源描述:

《利率期限结构模型》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第21章利率期限结构模型清华大学经管学院朱世武Zhushw@sem.tsinghua.edu.cnResdat样本数据:www.resset.cnSAS论坛:www.resset.cn利率期限结构模型简介利率期限结构相关符号表:在未来时间T到期的零息票债券在时间t的价格,即在未来时间T支付单位1的债券在时间t的价格。起息日为时间t,剩余到期期限为年的零息票债券利率。有:起息日为时间t,剩余到期期限为年的连续复合利率。有:在时间t计算的,起息日为时间s,剩余到期期限为T-s的远期利率。有:在时间t计算的,起息日为时间s的瞬时远期利率。有:即期

2、利率,时间t计算的,剩余到期期限无限小时的零息票债券的连续符合内部收益率。有:起息日为时间t,剩余到期期限为年的连续复合利率。有:贴现债券价格在时间t的预期瞬间收益。贴现债券价格在时间t的瞬时波动。标准布朗运动。瞬间远期利率的波动。有:贴现债券利率的波动。重组树中,在第i种状态下,剩余到期期限为T的贴现债券在时间n的均衡价格。注意,与的定义不同,此处T表示的是剩余到期期限,而非到期日。利率期限结构的概念利率(interestrate)是经济和金融领域的一个核心变量,它实质上是资金的价格,反映了资金的供求关系。利率期限结构(termstruc

3、tureofinterestrates),又称收益率曲线(yieldcurve),是指在相同风险水平下,利率与到期期限之间的关系,或者说是理论上的零息债券利率曲线。常见的利率期限结构有以下四种:贴现因子曲线(discountfactorcurve):;零息票收益曲线(zero-couponyieldcurve),(常用):或;远期利率曲线(forwardratescurve):瞬时远期利率期限结构(instantaneousforwardtermstructure),(常用):。静态模型动态模型样条函数模型节约型模型指数样条法(Vasice

4、k&Fong,1982)均衡模型套利模型Vasicek模型(Vasicek,1977)CIR模型(Cox、Ingersoll&Ross,1985)Ho-Lee模型(Ho&Lee,1986)Hull-White模型(Hull&White,1990)HJM模型(Heath,Jarrow&Morton,1992)Nelson-Siegel模型(Nelsen&Siegel,1987)Svensson扩展模型(Svensson,1994)B样条法,(Steeley,1991)多项式样条法(McCulloch,1971,1975)利率期限结构模型静态利

5、率期限结构模型静态利率期限结构模型概述静态利率期限结构模型以当天市场的债券价格信息为基础,构造利率曲线函数,利用所构造的利率曲线得到理论价格来逼近债券的市场价格,从而得出符合当天价格信息的利率期限结构。静态利率期限结构模型最为常见的有样条函数模型和节约型模型,样条函数模型主要包括多项式样条法、指数样条法和B样条法,节约型模型的主要代表是Nelson-Siegel模型及其扩展模型。通常,使用静态模型拟合利率期限结构的具体过程如下:首先,从市场上选出一组无违约风险的附息债券。设该组附息债券在时间t的市场价格为,在时间s的现金流入为,其中,,j表

6、示该组的第j支债券。由于期限结构指的是零息债券的收益率与其到期日间之关系,因此必须先调整“息票效应”(CouponEffect)。息票效应是指:对于剩余到期期限相同的债券来说,它们的到期收益率不仅与当前的利率期限结构有关,还与它们的票面利率水平有关。对于相同的即期利率期限结构而言,到期收益率是这些即期利率的加权平均,而权重是各个现金流的现值。于是,假想出贴现函数或零息票债券利率的具体形式,其中和为参数向量。然后利用假想出的具体形式,来推导附息债券的理论价格,当推导出的理论价格与给定的市场价格最为接近时,就可以估计出由和构成的参数向量,即:其

7、中,是从模型或模型推导出的附息债券理论价格。显然,债券样本中长期品种的价格波动性应大于短期品种,而由此带来的结果是:以上述方法中表示长期债券的定价误差往往大于短期债券。这就是在进行收益率曲线拟合时无法避免的样本异方差特征,导致的结果往往是收益率曲线在远端出现“过度拟合”(Overfitting)的情况,而在近端则无法很好地表现短期债的实际情况。为了解决这一问题,应该对短期债券赋予较高的权重,而对长期债券赋予较低的权重,从而允许长期债券存在较高的误差。在Bolder和Streliski(1999)的论文中,设定了如下的权重系数:而将参数的估计

8、过程定义为:多项式样条法多项式样条函数假设折现因子是到期期限s的多项式分段连续函数。在运用此函数时,仔细选择多项式的阶数是至关重要的。阶数的多少决定了利率曲线的平滑程度和拟合程度

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。