假设检验的基本思想

假设检验的基本思想

ID:27119704

大小:322.31 KB

页数:16页

时间:2018-12-01

假设检验的基本思想_第1页
假设检验的基本思想_第2页
假设检验的基本思想_第3页
假设检验的基本思想_第4页
假设检验的基本思想_第5页
资源描述:

《假设检验的基本思想》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、8.1 假设检验的基本思想一、假设检验问题的提出二、假设检验的基本思想三、假设检验中两类错误上一章介绍了对总体中未知参数的估计方法。本章将讨论统计推断的另一个重要方面——统计假设检验。出于某种需要,对未知的或不完全明确的总体给出某些假设,用以说明总体可能具备的某种性质,这种假设称为统计假设。如正态分布的假设,总体均值的假设等。这个假设是否成立,还需要考察,这一过程称为假设检验,并最终作出判断,是接受假设还是拒绝假设。本章主要介绍假设检验的基本思想和常用的检验方法,重点解决正态总体参数的假设检验。统计推断的另一个重要问题是假设检验问题。在总体的分布函数未知或只知其形式,但不知

2、其参数的情况下,为了推断总体的某些性质,提出某些关于总体的假设。例如,提出总体服从泊松分布的假设,又如,对于正态总体提出数学期望μ0的假设等。这里,先结合例子来说明假设检验的基本思想和做法。假设检验就是根据样本对所提出的假设作出判断:是接受,还是拒绝。一、假设检验问题的提出例1已知某炼铁厂的铁水含碳量X在某种工艺条件下服从正态分布N(4.55,0.1082)。现改变了工艺条件,又测了五炉铁水,其含碳量分别为:4.28,4.40,4.42,4.35,4.37。根据以往的经验,总体的方差2=0.1082一般不会改变。试问工艺改变后,铁水含碳量的均值有无改变?显然,这里需要解决

3、的问题是,如何根据样本判断现在冶炼的铁水的含碳量是服从≠4.55的正态分布呢?还是与过去一样仍然服从=4.55的正态分布呢?若是前者,可以认为新工艺对铁水的含碳量有显著的影响;若是后者,则认为新工艺对铁水的含碳量没有显著影响。通常,选择其中之一作为假设后,再利用样本检验假设的真伪。例2某自动车床生产了一批铁钉,现从该批铁钉中随机抽取了11根,测得长度(单位:mm)数据为:10.41,10.32,10.62,40.18,10.77,10.64,10.82,10.49,10.38,10.59,10.54。试问铁钉的长度X是否服从正态分布?而在本例中,我们关心的问题是总体X是

4、否服从正态分布。如同例1那样,选择是或否作为假设,然后利用样本对假设的真伪作出判断。以上两例都是科技领域中常见的假设检验问题。我们把问题中涉及到的假设称为原假设或称待检假设,一般用H0表示。而把与原假设对立的断言称为备择假设,记为H1。如例1,若原假设为H0:=0=4.55,则备择假设为H1:≠4.55。若例2的原假设为H0:X服从正态分布,则备择假设为H1:X不服从正态分布。当然,在两个假设中用哪一个作为原假设,哪一个作为备择假设,视具体问题的题设和要求而定。在许多问题中,当总体分布的类型已知时,只对其中一个或几个未知参数作出假设,这类问题通常称之为参数假设检验,如

5、例1。而在有些问题中,当总体的分布完全不知或不确切知道,就需要对总体分布作出某种假设,这种问题称为分布假设检验,如例2。接下来我们要做的事是:给出一个合理的法则,根据这一法则,利用巳知样本做出判断是接受假设H0,还是拒绝假设H0。假设检验的一般提法是:在给定备择假设H1下,利用样本对原假设H0作出判断,若拒绝原假设H0,那就意味着接受备择假设H1,否则,就接受原假设H0。换句话说,假设检验就是要在原假设H0和备择假设H1中作出拒绝哪一个和接受哪一个的判断。究竟如何作出判断呢?对一个统计假设进行检验的依据是所谓小概率原理,即概率很小的事件在一次试验中是几乎不可能发生二、假设检

6、验的基本思想例如,在100件产品中,有一件次品,随机地从中取出一个产品是次品的事件就是小概率事件。因为此事件发生的概率=0.01很小,因此,从中任意抽一件产品恰好是次品的事件可认为几乎不可能发生的,如果确实出现了次品,我们就有理由怀疑这“100件产品中只有一件次品”的真实性。那么取值多少才算是小概率呢?这就要视实际问题的需要而定,一般取0.1,0.05,0.01等。以例1为例:首先建立假设:H0:=0=4.55,H1:≠4.55。其次,从总体中作一随机抽样得到一样本观察值(x1,x2,…,xn)。注意到是的无偏估计量。因此,若H0正确,则与0的偏差一般不应太大

7、,即不应太大,若过分大,我们有理由怀疑H0的正确性而拒绝H0。由于,因此,考察的大小等价于考察的大小,哪么如何判断是否偏大呢?具体设想是,对给定的小正数,由于事件是概率为的小概率事件,即因此,当用样本值代入统计量具体计算得到其观察值时,若,即说明在一次抽样中,小概率事件居然发生了。因此依据小概率原理,有理由拒绝H0,接受H1;若,则没有理由拒绝H0,只能接受H0。将上述检验思想归纳起来,可得参数的假设检验的一般步骤:(1)根据所讨论的实际问题建立原假设H0及备择假设H1;(2)选择合适的检验统计量Z,并明确其分布

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。