欢迎来到天天文库
浏览记录
ID:269136
大小:399.50 KB
页数:16页
时间:2017-07-16
《人口老龄化问题建模论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、人口老龄化问题建模论文人口老龄化问题摘要人口老龄化问题是21世纪中国所面临的严峻社会问题,已引起全社会的广泛关注,但目前我们对老龄化影响因素的研究还不够系统和全面。本文从老龄化的影响因素出发,建立主成分分析法、线性拟合和灰色预测的数学模型,得到影响人口老龄化的四个主要因素,并科学的预测出了未来几年老龄化人口的数量。首先,我们通过阅读大量的相关文献,确定出十几个影响人口老龄化的影响因子,并从国家统计局网站上获得相应指标的原始数据,结合合理的假设,建立不同年份各个影响因子的一个二维表。其次,我们建立主成分分析法模型,将所获得的指标和原始数据进行标准化处理,运用SPSS软件进行分析,得到了影响人口
2、老龄化的主要因素有:人均GDP,预期平均寿命,教育经费投入,农村人口比重这四个方面。再次,利用上述已提取的四个影响因素,通过线性拟合得出四个主要因素和人口老龄化的函数关系式:y=-42.202925370799250+0.679854684616473*x1-0.000002837083521*x2+0.000027713758515*x3+0.016482418326739*x4再通过灰色预测模型结合上述关系式求解出未来人口老龄化的比重,随后我们将历史年份预测值与真实值进行对比,其结果较为吻合,从而验证出了模型的合理性。下表为我们预测出的未来6年老龄化人口比重:20102011201220
3、13201420157.77.98.28.58.910.3最后,我们对此模型进行了优缺点评价和模型改进。本文特色是将线性拟合和灰色预测模型相结合。首先根据历史数据,线性拟合出人口老龄化比重与四个影响因素之间的的函数关系式,再运用灰色预测模型预测出四个影响因素的未来指标,最后代入已拟合好的函数关系式中,就可以求解出未来老龄化人口的比重。关键字:人口老龄化主成分分析法线性拟合灰色预测16人口老龄化问题建模论文1、问题重述人口问题是全球最主要的社会问题之一,是当代许多社会问题的核心。据官方统计,到2050年,世界人口将达到90—100亿,其中60岁以上的人口将达到20亿。控制人口的增长已迫在眉睫。
4、而老龄化问题是人口问题中最突出的问题。目前世界人口老龄化程度较深的国家有日本、意大利、德国等,其高达25%以上,而我国65岁以上的老年人口占总人口7%。按这个标准,我国已进入老龄化社会。控制人口老龄化问题已刻不容缓,对社会经济的稳定和可持续发展都有重要意义。利用附表中的数据及互联网数据,建立数学模型,分析老龄化人口数与诸多影响因素之间的关系,为防止老龄化提供依据,同时预测未来两年我国老龄化人口数量。2、问题分析21世纪的中国是一个不可逆转的老龄社会。日益增多的老龄人口以及与此相伴而生的社会经济问题已引起全社会的广泛关注。针对影响因素与人口老龄之间的关系和预测未来老龄化人口数量这两个问题我们做
5、了如下分析:1.就题目中所呈现的我国人口老龄化的现状,我们从影响此现状的因素入手,选择经济、科技、政策、环境等四个方面,并从这四方面展开分析,最终计算出全面合理的影响因素。2.基于第二问,预测未来人口老龄化的数量也就是先用灰色预测模型,由历史值得出各个影响因素的未来值,再通过线性拟合关系式,运算出结果的过程。3、模型假设1、假设在中国统计局网站搜集的数据均真实有效。2、假设影响人口老龄化各因素之间互不相关。3、本文以年份为时间变量,忽略了以地区差异性为特点的人口密度指标。4、符号说明X人口老龄化比重X1女性比重X2农村人口比重X3恩格尔系数16人口老龄化问题建模论文X4预期平均寿命X5人均G
6、DPX6教育投入X7科学技术投入X8文体投入X9社会保障投入X10医疗卫生投入X11环境保护X12自然增长率y人口老龄化比重常数预期平均寿命的权重人均GDP的权重教育经费投入的权重农村人口比重的权重指标编号年份第个指标的各年数据的平均值第个指标的各年数据的标准差原始数据16人口老龄化问题建模论文相关系数矩阵表4-1-15、模型建立与求解模块Ⅰ(主成分的筛选)5.1.1数据查找我们通过中国统计局网站得到所需年份的统计年鉴,对原始因素的相关数据进行了搜集整理,得到与本模型相关的数据。(详见附录一)5.1.2模型分析主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在本
7、题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和问题分析的复杂性,我们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。故选用此种方法进行主要因
此文档下载收益归作者所有