资源描述:
《总体主线和关键点分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、总体主线和关键点分析“图形与几何”的课程内容,以发展学生的空间观念、几何直观、推理能力为核心展开,主要有:空间和平面基本图形的认识,图形的性质、分类和度量;图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;物体和图形的位置及运动的描述,以及利用坐标对其的刻画。1、图形的认识正确理解与把握《标准》对图形认识的要求,分析学生学习这部分内容时的特点,对于课程的实施和目标的达成是十分重要的。(1)明确认识的对象在第一学段,《标准》要求“能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体”;“
2、能通过实物和模型辨认长方体、正方体、圆柱和球等几何体”;“能辨认长方形、正方形、三角形、平行四边形、圆等简单图形”等,其中既涉及到了对简单几何体的认识,也涉及到了经过抽象后的三维图形和二维图形。在第二学段中,认识的图形增加了线段、射线和直线等一维图形;对角的认识扩大到了平角、周角,增加了梯形、扇形,对三角形的认识从一般三角形到等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形等;三维图形的认识对象增加了圆锥。在第三学段,除增加了点、平面、菱形外,而更多的是对已有图形从整体到局部的认识,如“理解三
3、角形及其内角、外角、中线、高线、角平分线等概念”,“理解圆、弧、弦、圆心角、圆周角的概念”等。与其他二维、三维图形相比,点、直线、平面这些基本图形抽象的程度更高,因此必须结合对现实生活中的物体的抽象才能更好地理解它们。《标准》关于“图形的认识”内容的安排,体现了从生活到数学、从直观到抽象,从整体到局部的特点,且三维、二维、一维图形交替出现,目标要求逐渐提高。(2)明确图形认识的要求图形认识的要求主要包括两个方面,一是对图形自身特征的认识,二是对图形各元素之间、图形与图形之间关系的认识。对图形自身的特征认
4、识,是进一步研究图形的基础。在三个学段中,认识同一个或同一类图形的要求有明显的层次性:从“辨认”到“初步认识”,再从“认识”到“探索并证明”。例如,对于长方体、正方体、圆柱和球等几何体,第一学段要求“辨认”;第二学段要求“认识”;第三学段要求了解其中一些几何体的侧面展开图。又如,对于平行四边形,第一学段要求“辨认”;第二学段要求“认识”;第三学段要求“探索并证明平行四边形的性质定理、判定定理”。再如,关于“视图”,第一学段要求“能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体”;第二学段要求“
5、能辨认从不同方向(前面、侧面、上面)看到的物体的形状图”;第三学段要求“会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,会根据视图描述简单的几何体”。这种要求的层次性,既体现了从整体到局部的认识过程;也符合学生的认知特点,逐渐深入、循序渐进。对图形的各元素之间、图形与图形之间的关系的认识,主要包括大小、位置、形状之间关系的认识。第一学段的“了解直角、锐角和钝角”;第二学段的“体会两点间所有连线中线段最短”;“了解周角、平角、钝角、直角、锐角之间的大小关系”;“了解三角形两边之和
6、大于第三边”;第三学段的“会比较线段的长短”,“能比较角的大小”等,都是对图形大小关系的研究。点与直线的位置关系、直线与直线的位置关系、点与圆的位置关系、直线与圆的位置关系等,是义务[1][2][3][4][5]下一页教育阶段几种主要的图形位置关系;轴对称、中心对称、平移也反映了图形与图形之间的位置关系。图形的全等、相似都是研究研究图形之间关系的课程内容,全等研究的是图形的形状、大小关系;图形的相似研究的是图形的形状之间的关系;而图形的位似则还涉及到了图形的位置关系。(3)明确认识图形的方式与途径《标准
7、》中较多地使用“通过观察、操作,认识……”、“结合实例(生活情境)了解……”、“通过实物和具体模型,了解……”的表述,这实际上明确了认识图形的过程和方式。图形,是人类长期通过对客观物体的观察逐渐抽象出来的,抽象的核心是把物体的外部形象用线条描绘在二维平面上。例如,点是位置的抽象,在几何中用“点”来标记一个物体的位置(例如地图上的城市为点);线是路径的抽象,我们把“从一个地方走到另一个地方”抽象为“线段,或折线段、曲线段”。又如,观察一张书桌,它占据一定的空间,有长短、宽窄和高矮,这些反映到我们的脑子里就
8、有了形状的概念,就抽象成几何图形。继续观察,发现桌面上有四个相等的角,两两相等的对边,长和宽不相等。黑板、书本、门窗……等,都具有这些相同的特征,于是就形成了“长方形”的概念。“长方形”已不再是某个具体的物体,而是抽象了的图形。正如前面指出的那样,图形的认识需要经历抽象的过程,有时这样的过程还是较为漫长的,因为学生往往难以一次性地真正完成这样的抽象。例如,对于角的概念,虽然小学就有接触,但在第三学段探讨角的轴对称性时,有的学生会认为“角不是