资源描述:
《导数的几何意义》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、导数的几何意义一、复习1、导数的定义其中:⑴其几何意义是:表示曲线上两点连线(就是曲线的割线)的斜率。其几何意义是?2:切线Pl能否将圆的切线的概念推广为一般曲线的切线:直线与曲线有唯一公共点时,直线叫曲线过该点的切线吗?如果能,请说明理由;如果不能,请举出反例。不能xyo直线与圆相切时,只有一个交点PPQoxyy=f(x)割线切线T1、曲线上一点的切线的定义结论:当Q点无限逼近P点时,此时直线PQ就是P点处的切线PT.点P处的割线与切线存在什么关系?新课xoyy=f(x)设曲线C是函数y=f(x)的图象,在曲线C上取一点P(x0,y0)及邻近一点Q(x0+△
2、x,y0+△y),过P,Q两点作割线,当点Q沿着曲线无限接近于点P点P处的切线。即△x→0时,如果割线PQ有一个极限位置PT,那么直线PT叫做曲线在曲线在某一点处的切线的定义:△x△yPQT此处切线定义与以前的定义有何不同?圆的切线定义并不适用于一般的曲线。通过逼近的方法,将割线趋于的确定位置的直线定义为切线(交点可能不惟一)适用于各种曲线。所以,这种定义才真正反映了切线的直观本质。l2l1AB0xyxoyy=f(x)P(x0,y0)Q(x1,y1)M△x△y割线与切线的斜率有何关系呢?即:当△x→0时,割线PQ的斜率的极限就是曲线在点P处的切线的斜率,xoy
3、y=f(x)PQ1Q2Q3Q4T继续观察图像的运动过程,还有什么发现?当点Q沿着曲线无限接近点P即Δx→0时,割线PQ有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.即:这个概念:①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质——函数平均变化率的极限.要注意,曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以
4、有多个,甚至可以无穷多个.函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是:.故曲线y=f(x)在点P(x0,f(x0))处的切线方程是:题型三:导数的几何意义的应用例1:求曲线y=f(x)=x2+1在点x=1处的切线方程.QPy=x2+1xy-111OjMDyDx因此,切线方程为y-2=2(x-1),即y=2x.求曲线在某点处的切线方程的基本步骤:①求出该点的坐标;②利用该点切线的斜率等于函数在该点的导数;③利用点斜式求切线方程.题型一 求曲
5、线的切线方程导数的几何意义的应用练习:已知曲线y=x2,求曲线过点P(3,5)的切线方程解点P(3,5)不在曲线y=x2上,设切点为(x0,y0),由(1)知,y′
6、=2x0,∴切线方程为y-y0=2x0(x-x0),由P(3,5)在所求直线上得5-y0=2x0(3-x0),①解析答案反思与感悟联立①②得,x0=1或x0=5.从而切点A的坐标为(1,1)或(5,25).当切点为(1,1)时,hto导数与函数图象升降的关系:(1)若函数y=f(x)在x=x0处的导数存在且f′(x0)>0(即切线的斜率大于零),则函数y=f(x)在x=x0附近的图象是上升的;若f
7、′(x0)<0(即切线的斜率小于零),则函数y=f(x)在x=x0附近的图象是下降的.(2)导数绝对值的大小反映了曲线上升和下降的快慢.反思与感悟跟踪训练2已知y=f(x)的图象如图所示,则f′(xA)与f′(xB)的大小关系是()解析答案返回A.f′(xA)>f′(xB)B.f′(xA)8、程可以看到,当时,f’(x0)是一个确定的数.那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.即:函数在点处的导数、导函数、导数之间的区别与联系。1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。2)函数的导数,是指某一区间内任意点x而言的,就是函数f(x)的导函数.3)函数f(x)在点x0处的导数就是导函数在x=x0处的函数值,即。这也是求函数在点x0处的导数的方法之一。练习