教学中如何培养学生的发散性思维 毕业论文

教学中如何培养学生的发散性思维 毕业论文

ID:256414

大小:51.00 KB

页数:8页

时间:2017-07-14

教学中如何培养学生的发散性思维  毕业论文_第1页
教学中如何培养学生的发散性思维  毕业论文_第2页
教学中如何培养学生的发散性思维  毕业论文_第3页
教学中如何培养学生的发散性思维  毕业论文_第4页
教学中如何培养学生的发散性思维  毕业论文_第5页
资源描述:

《教学中如何培养学生的发散性思维 毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、宿迁高等师范学校毕业论文题目:教学中如何培养学生的发散性思维专业:小学教育(数学)班级:05(1)班姓名:指导老师:起止日期:2010.2.16至6.18数学教学中培养学生的发散性思维摘要:发散性思维是不依常规,寻求变异,对给出的材料,信息从不同角度,向不同方向,用不同方法或途径去分析和解决问题的一种思维方式。长期以来,小学数学教学以集中思维为主要的思维方式,课本上的题目和材料的呈现过程大都循着一个模式,学生习惯于按照书上写的与教师的方式去思考问题,用符合常规的思路和方法解决问题,这对于基础知识基本技能的掌握是必要的,但对于数学兴趣的激发、智力能力的发展是不够的,在数学教学中教师要

2、有意识地培养学生的发散性思维。特而发散思维却正好反映了创造性思维“尽快联想,尽多作出假设和提出多种解决问题方案”的特点,因而成为创造性思维的一种主要形式。在小学数学教学的过程中,在培养学生初步的逻辑思维能力的同时,也要有意识地培养学生的发散思维能力。关键词:数学教学发散思维教育心理学认为:创新思维有赖于发散思维。发散思维是指考虑问题时,没有一定的思考方向,可以突破固有的知识结构和认识框架、自由思考、任意想象,从而获得大量的设想,提出多种多样的想法和做法。简单的说,发散思维是不依常规,寻求变异,从多方面寻求问题答案的思维方式。一般来说,设想愈多,发散愈大,创新出现的概率也愈大。可见,

3、创新思维更多的是同发散思维结合在一起的,思维的创新水平更多的是通过思维的发散水平反映出来的。因此,为了更好地培养学生的创新思维能力,激发学生积极主动地创新,就必须充分重视学生发散思维能力的培养。笔者认为发散思维能力的培养应主要从以下几个方面着手:1、在求异中培养发散思维在诱导乐于求异的心理倾向中,培养学生的发散思维能力,精细地诱导学生的求异意识。对于学生在思维过程中时不时地出现的求异因素要及时予以肯定和热情表扬,使学生真切体验到自己求异成果的价值。对于学生欲寻异解而不能时,教师则要细心点拨,潜心诱导,帮助他们获得成功,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临

4、具体问题时,就会能动地作出“还有另解吗?”“试试看,再从另一个角度分析一下!”的求异思考。事实证明,也只有在这种心理倾向驱使下,那些相关的基础知识、解题经验才会处于特别活跃的状态,也才可能对题中数量作出各种不同形式的重组,逐步形成发散思维能力。2、在变通中培养发散思维8变通,是发散思维的显著标志。要对问题实行变通,只有在摆脱习惯性思考方式的束缚,不受固定模式的制约以后才能实现,因此,在学生较好地掌握了一般方法后,要注意诱导学生离开原有思维轨道,从多方面考虑问题,实行变通。当学生思路闭塞时,教师要善于调度原型帮助学生接通与有关旧知识和解题经验的联系,作出转换、假设、化归、逆反等变通,

5、产生多种解决问题的设想。如对于下面的应用题:王师傅做一批零件,8天做了这批零件的2/5,这样,剩下的工作还要几天可以完成?学生一般都能根据题意作出(1-2/5)÷(2/5÷8)的习惯解答。此时,教师可作如下诱导:(教师诱导性提问学生求异性解答)①完成这批零件需要多少天8÷2/5-8或8÷2/5×(1-2/5)②已做零件数是剩下零件数2/5÷(1一2/5)的几分之几?③剩下零件数是已做零件数(1-2/5)÷2/5的几倍?④能从题中数量间找出相等方程解法(略)关系吗?⑤从题中几种量中能判断出比例解法(略)比例关系吗?通过这些诱导,能使学生自觉地从一个思维过程转换到另一个思维过程,逐步形

6、成在题中数量间自由往返调节的变通能力,这对于培养学生的发散思维是极为有益的。3、在独创中培养发散思维在分析和解决问题的过程中,学生能别出心裁地提出新异的想法和解法,这是思维独创的表现。尽管小学生的独创从总体上看是处于低层次的,但它蕴育着未来的大发明、大创造,教师应满腔热情地鼓励他们别出心裁地思考问题,大胆地提出与众不同的意见和质疑,独辟蹊径地解决问题,这样才能使学生思维从求异、发散向创新推进。如解答“某玩具厂生产一批儿童玩具,原计划每天生产60件,7天完成任务,实际只用6天就全部完成了。实际每天比原计划多生产多少件玩具?”一题时,照常规解法,先求出总任务有多少件,实际每天生产多少件

7、,然后求出实际每天比原计划多生产多少件,列式为60X7÷6-60=10(件)。而有一个学生却说:“只须60÷6就行了”。他理由是:“这一天的任务要在6天内完成所以要多做10件。”从他的回答中,可以看出他的思路是跳跃的,省略了许多分析的步骤。他是这样想的:7天任务6天完成,时间提前了1天,自然这一天的任务(60件)也必须分配在6天内完成,所以,同样得60÷6=10,就是实际每天比计划多做的件数了。毫无疑问,这种独创性应该给予鼓励。独创往往蕴含于求异与发散之中,经常诱导学

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。