论文实例:万有引力常数g的精确测量与扭秤特性研究

论文实例:万有引力常数g的精确测量与扭秤特性研究

ID:25065507

大小:75.50 KB

页数:19页

时间:2018-11-18

论文实例:万有引力常数g的精确测量与扭秤特性研究_第1页
论文实例:万有引力常数g的精确测量与扭秤特性研究_第2页
论文实例:万有引力常数g的精确测量与扭秤特性研究_第3页
论文实例:万有引力常数g的精确测量与扭秤特性研究_第4页
论文实例:万有引力常数g的精确测量与扭秤特性研究_第5页
资源描述:

《论文实例:万有引力常数g的精确测量与扭秤特性研究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、论文实例:万有引力常数G的精确测量与扭秤特性研究万有引力常数G的精确测量不仅对于揭示引力相互作用的性质非常关键,而且对于理论物理学、地球物理学、天文学、宇宙学以及精密测量技术等领域的研究都具有重要的意义,因而得到理论和实验工的广泛关注。自Cavendish测出万有引力常数的第一个实验值以来,人们对此进行了大量的实验研究,并给出了近300个G的测量结果。但令人遗憾的是,作为最早被认识和测量的物理基本常数,与其它基本常数相比,G的测量精度迄今为止是最差的。这是因为万有引力相互作用十分微弱且不可屏蔽,而且涉及到质量、长度和时间等基本量的绝对测量,因此G的精确测量

2、是一项艰巨而复杂的系统工作,它不仅需要好的物理思想和巧妙的实验方案,而且也极力追求实验检测技术的极限。因而作为一个热点和难点,万有引力常数G的精确测量为各国科学家所关注。近三十年来,大多数实验者都认为自己的测G实验达到了10-4数量级的相对精度,但事实上他们的测量结果之间的吻合度仅达到10-3数量级。由于G的测量值之间不吻合,国际基本物理学常数委员会在1999年调整基本常数时,将G的推荐值的相对不确定度由CODATA-86的128m(1m=)增加到CODATA-98的1500m。这也使G成为此次基本常数更新中唯一不确定度下降的物理学基本常数。这些现象充分说

3、明测G的艰巨性和重要性,同时也意味着存在未被认识的系统误差。人们不禁要问:万有引力常数G的绝对数值究竟是多大?为了回答这一问题,我选择了万有引力常数G的精确测量这一基础研究课题,并希望能在基本物理学常数中写入中国人自己测出的值。该课题得到国家自然科学创新研究群体、国家杰出青年科学基金、国家自然科学基金重点项目、国家自然科学基金面上项目、国家科委九五攀登预研项目等7项课题资助。围绕万有引力常数G的精确测量和精密扭秤特性研究,本文主要介绍以下四个方面的研究工作:HUST—99扭秤周期法测G实验。扭秤可以绕着悬丝在水平面内自由转动,以探测作用于检验质量上水平方向

4、的待测外力作用。作为一种高灵敏度的弱力检测工具,精密扭秤已被广泛应用于万有引力和电磁力等弱力的精密测量以及材料特性研究等诸多研究领域。扭秤周期法测量引力常数G的原理为:通过比较作为检验质量的扭秤系统在吸引质量两种不同引力场配置下的周期变化而测得G值。一根直径25长度为513mm的钨丝悬挂两32g的铜球检验质量构成扭秤,扭秤系统置于真空容器中,自由震荡周期为3484秒。当两个6.25kg的圆柱体吸引质量置于一个检验质量两侧时,其周期增加到4441秒。我们实验的创新之处在于采用了长周期高Q值扭秤,并使之在一个恒温(日变化小于0.005°C)环境下工作,从而克服

5、了扭丝滞弹性和热弹性对测G的影响。我们采用的非对称扭秤可以使得较小的吸引质量产生较大的待测信号,但是这种设计使扭秤系统易受外界干扰的影响,同时也会增加扭秤运动的非线性效应,且对扭秤运动信号的周期拟合提出了更高要求。我们的实验结果的相对精度达到105m,该测量结果被国际物理学基本常数委员会推荐的CODATA-98值所采用,并被命名为“HUST-99”。扭秤系统周期拟合数据处理方法研究。在周期法测量引力常数G的实验中,扭秤周期的测量精度直接影响G的测量精度。扭秤的周期一般从几分钟到小时量级,周期越长,灵敏度越高。但长周期的基频高精度拟合是一件很困难的事,用传统

6、的傅氏变换、极值序列拟合和非线性最小二乘拟合等方法难以满足实验精度的要求。周期法测G实验对扭秤运动的基频的测量精度要求很高,而对振幅和位相等的测量精度要求相对较低。根据这一具体要求,本文提出了对扭秤运动周期的单参量直接基频拟合。单参量直接基频拟合的基本思想是只给出周期的最佳估计值,而对其他参量不作任何限制,即采用仅对信号周期敏感的方差作为判据,利用最小二乘原理给出周期的最可信赖值。理论分析和数值模拟表明该方法可有效克服周期法测G实验中的主要干扰,即由于非线性效应而寄生的高次谐波振荡;由于阻尼的存在引起的扭秤运动振幅的衰减;由于扭丝的蠕变及实验环境的变化而引

7、起的扭秤静平衡点的漂移等。单参量直接基频拟合能高精度给出信号的周期,代价是牺牲了其它参量的测量精度。因为它未对其他参量作任何限制,换而言之给出了其他参量很大的变化范围,从而有可能高精度地将周期限制在较小的范围内,这类似于量子力学中的测不准原理。此外,单参量直接基频拟合与非线性最小二乘拟合相结合,不仅可以解决余弦函数类非线性拟合的线性化问题,同时还可以给出振幅和位相等其他参数的最佳估计值。精密扭秤特性研究。目前各小组实验测量的G值在其误差范围内不吻合,这一现象说明存在未被认识的系统误差。为了解释该现象,我们系统深入地研究了精密扭秤系统的非线性、热弹性以及滞弹

8、性等特性,并分析了它们对测G实验的影响。精密扭秤实验的精度依赖于扭

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。