对一道思考题及其“答案”的思考-第1

对一道思考题及其“答案”的思考-第1

ID:24692972

大小:51.00 KB

页数:4页

时间:2018-11-16

对一道思考题及其“答案”的思考-第1_第1页
对一道思考题及其“答案”的思考-第1_第2页
对一道思考题及其“答案”的思考-第1_第3页
对一道思考题及其“答案”的思考-第1_第4页
资源描述:

《对一道思考题及其“答案”的思考-第1》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、对一道思考题及其“答案”的思考

2、第1 人教版小学实验课本《数学》第六册第144页有这样一道思考题:“在钉子板上围图形。通过3个钉子可围几种不同的形状?通过4个钉子可以围几种不同的形状?”(附图{图})对这道题,“教参”(人教版《小学数学第六册教师教学用书》)给的答案(下称“参考答案”)是:“通过3个钉子:三角形(直角三角形、锐角三角形、钝角三角形。其中可能有等腰三角形,但不可能围出等边三角形。)通过4个钉子:四边形(一般四边形、正方形、长方形、平行四边形等。)以上每种图形,由于大小不同,可能会有很多,只要学生围出即可。”下面谈一谈,笔者

3、对上述思考题及参考答案的几点思考。思考一参考答案对不对?笔者认为,参考答案是有毛病的。因为:第一,小学三年级学生还没有学习“直(锐、钝)角三角形”和“等腰(等边)三角形”等概念(这些概念是四年级的学习内容)。因此他们是看不懂上述参考答案的。第二、参考答案对“不同的形状”的含义有曲解之嫌。我们知道,形状相同(或不同)的图形一般是指相似(或不相似)的图形,因此,对思考题所提“可以围几种不同的形状”的问题,就应该理解为“可以围几种不相似的图形”。而不应该理解为“可以围几种不同类别的图形”(因为同类别的图形不一定同形状。例如,图1中的3个三角形

4、是同属“钝角三角形”这一类图形的,但却不相似即不同形状)。容易看出,参考答案就是这后一种理解的产物,这样的答案是难以令人置信的。第三、对思考题所提“可以围几种不同的形状”的问题,理当以确切的数据给予回答,但参考答案最后却以“可能会有很多”一言以蔽之,这也是不妥的。思考二不同形状知多少?前述思考题是一个颇为复杂的问题。下面我们来看,通过3个钉子可以围几种不同形状即不相似的三角形。为叙述方便,我们把钉子板上的钉子记为点A[,ij](下标i和j分别为行序号和列序号,i=1,2,…6,j=1,2,…,6。如点A[,32]即表示位于第三行第二列的

5、那个钉子),并把同行(列)相邻两点间距离设为“1”。可以看出,所围三角形可分为下列几类:(Ⅰ)短边长为1的三角形(附图{图})这类三角形为数甚多是显然的。我们关心的是:它们共有几种不同的形状?这可以通过寻找“代表”(每一种形状找一个三角形充当“代表”)的途径来解决。这个寻找“代表”的工作是一项十分细致且设计性很强的工作(要保证所寻“代表”不漏不重)。此处,我们可以取以线段A[,11]A[,21]为边、图2中的任一加圈点“⊙”为顶点的三角形为“代表”。容易看出,这样的代表共有10个,它们是互不相似即形状互不相同的。并且,在短边长为1的这一

6、类三角形中,已不再存在形状不同于这10个“代表”的其它三角形了。由此可知,这类三角形共有10种不同的形状。(附图{图})在这类三角形中,不同形状的“代表”一共也能找到10个(以线段A[,21]A[,12]为边、图3中任一加圈点“⊙”为顶点的三角形以及△A[,22]A[,41]A[,13]、△A[,22]A[,61]A[,13]、△A[,23]A[,51]A[,14]、△A[,24]A[,61]A[,15])。因此,这类三角形也有10种不同的形状。(附图{图})在这类三角形中,不同形状的“代表”一共有12个(以线段A[,21]A[,13]

7、为边、图4中任一加圈点“⊙”为顶点的三角形以及△A[,14]A[,22]A[,51]、△A[,14]A[,22]A[,61]、△A[,16]A[,31]A[,24]、△A[,24]A[,41]A[,16])。因此,这类三角形共有12种不同的形状。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。