欢迎来到天天文库
浏览记录
ID:24193740
大小:25.50 KB
页数:4页
时间:2018-11-13
《知识与能力并举,传统与创新齐飞》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、知识和能力并举,传统与创新齐飞知识和能力并举,传统与创新齐飞——浅析2012年全国普通高考山东数学试卷纵观2012年普通高考山东卷数学试题,在秉承山东近几年自行命题形成的独立风格的同时,出现了诸多创新和突破。试卷在全面考查中学数学基本知识的同时,更加注重了对数学能力、数学思想和方法以及数学素养的考查,从基本结构、试题难度、区分度、试题的广度和深度等方面都称得上是一份出色的试卷。一、突出能力,强化思想,敢于创新,重视应用试题突出能力立意,强调对数学基本能力、基本思想的考查,把考纲中要求的各种知识认知目标和能力目标统一处理,充分吸收了新课改
2、的实践成果,大胆创新,形式新颖。1、积极探索,大胆创新,试题设计和试卷分值分配方面进行了调整首先,对试卷分值结构进行了调整。文理两科均把解答题第21题和第22题的分值调整为13分。这样的调整淡化了以往第22题压轴的概念,可在一定程度上减轻考生对最后一题的恐惧心理,缓解考试中的紧张情绪,始终能以平和的心态面对考卷。另外,文理两科的最后三道试题的最后一问都有一定的难度和思维量,梯度设计科学、合理,达到了高考试卷难度控制的理想状态。这次创新和调整也给中学数学教学和素质教育的落实提出了新的要求,将有效地避免中学教育的某些环节出现公式化、模式化。
3、其次,在题目的设计方面,也显示出诸多亮点和创新,仅举几例加以说明。(1)文理科第12题,以函数图象和性质为依托,巧妙结合了函数图象的公共点、函数图象的对称性、数形结合的思想、分类讨论的思想,对考生的思维水平要求较高,体现了较高的区分度。文理科第16题,以实际生活中的旋轮线作为载体,加以合理的数学抽象,系统考查了向量的坐标和运算,试题形式新颖,生动活泼,同时作为填空题的最后一题,也有着一定的难度和较好的区分度。选择、填空题的这两道收官题,为数学思维水平高的考生留足了思维驰骋的空间。(2)今年的文理两科的数列题目,以不同形式考查等差数列在特
4、殊长度的区间中的项数形成的数列,进一步挖掘了等差数列和等比数列的内在联系,从本质上挖掘了二者的内在统一性。试题源于教材,而又高于教材,有利于考查考生对数列本质思想的深刻把握。(3)函数及其导数的应用是历年高考重点考查的内容。今年的数学试卷勇于创新,把函数的单调性、图象和性质、不等式的证明以及导数的应用有机地结合在一起,试题设计较好地考查了考生的数学素养和数学洞察力,具有较高的区分度,使得不同水平的考生在此各显身手,获得与自己的真实能力和水平相对应的成绩。题目避免了常规题目的俗套设计和多参数化的繁琐讨论,入口宽,梯度大,降低了运算量,提高
5、了思维量,提高了试卷的整体质量。2、能力立意,强调思想,计算量和思维量设置恰当、相得益彰和往年的高考试卷相比,今年的数学试卷更加强调对数学能力和数学思想的考查。如理科第7题考查了排除法,理科第12题考查了分类讨论思想,文理科第16题、第21题对考生转化与化归的思想也提出了较高的要求。另外,在今年的试卷巧妙地把计算量和思维量做到了和谐统一。如文理科第12题,如果很好地利用函数图象的对称性,就可以巧妙避免利用导数进行相对复杂的计算;文科第21题,如果考虑到椭圆的对称性,可以减少一种情形的计算;文理科第21题,在计算中间如果及时换元,则可以极
6、大地减少计算量;文理科第22题,在计算过程中如果及时考虑函数的图象和性质,把第三问转化为两个函数间最大值和最小值的比较,就能有效地避免重复运算,做到又好又快地答题。3、重视应用背景,考查建模能力,全面考查考生的数学素养应用意识和数学建模能力是中学数学课程着力培养的数学基本意识和基本能力之一。自从新课程改革以来,在全国各地历年的高考题目中频频出现相关的考查点。在概率、排列组合的考查中都依附一定的应用背景,在向量考查中利用实际生活中的旋轮线为依托,考查考生利用向量工具进行数学建模的能力,同时对向量的坐标和运算等考点进行了考查;文科第21题圆
7、锥曲线中的图形,在实际生活中也为广大考生所熟悉。这些有着实际背景的问题,贴近生活实际,材料公平合理,同时也有着适当但不失真的数学抽象,避免了非数学思维因素而导致的试题偏离正常轨道。二、注重稳定,强调基础,秉承传统,回归自然试卷主体结构稳定,试题科学规范,表述简洁严谨,面向教学实际,回归教材,让考生能在规定时间内最大限度地发挥出自己的真实水平。1、考查全面,重点突出,巧妙地设计了知识考查的广度和深度2012年数学试卷巧妙地处理了试卷命制中广度和深度的矛盾,知识点覆盖全面且重点突出。全卷涵盖了数学课程标准中的大部分知识点,试卷针对性强,注重
8、考查通性通法,有效检测了考生对知识掌握的程度。在全面考查的同时,对支撑高中数学学科体系的主干内容也做到了重点考查,对于考纲中要求较高的三角函数、立体几何、概率统计、数列、函数和导数的应用、圆锥曲线等主干知识
此文档下载收益归作者所有