解析几何100题经典大题汇编

解析几何100题经典大题汇编

ID:24165740

大小:9.81 MB

页数:114页

时间:2018-11-13

解析几何100题经典大题汇编_第1页
解析几何100题经典大题汇编_第2页
解析几何100题经典大题汇编_第3页
解析几何100题经典大题汇编_第4页
解析几何100题经典大题汇编_第5页
资源描述:

《解析几何100题经典大题汇编》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、``解析几何解答题100题精选【山东省滕州二中2012届高三上学期期中理】22:(本小题满分14分)如图,为双曲线的右焦点,为双曲线在第一象限内的一点,为左准线上一点,为坐标原点,(Ⅰ)推导双曲线的离心率与的关系式;(Ⅱ)当时,经过点且斜率为的直线交双曲线于两点,交轴于点,且,求双曲线的方程.【答案】22:解:(Ⅰ)为平行四边形.设是双曲线的右准线,且与交于点,,,即………………6分(Ⅱ)当时,得所以可设双曲线的方程是,…8分设直线的方程是与双曲线方程联立得:由得.①[来源:学科网ZXXK]由已

2、知,,因为,所以可得②…………10分由①②得,消去得符合,所以双曲线的方程是………………14分【山东济南市2012界高三下学期二月月考理】已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率,椭圆上的点到焦点的最短距离为,直线l与y轴交于点P`````(0,m),与椭圆C交于相异两点A、B,且.(1)求椭圆方程;(2)求的取值范围.【答案】21.解:(1)设C:+=1(a>b>0),设c>0,c2=a2-b2,由条件知a-c=,=,∴a=1,b=c=…………………3分故C的方程为:y2+=1………

3、…4分(2)当直线斜率不存在时:…………5分当直线斜率存在时:设l与椭圆C交点为A(x1,y1),B(x2,y2)得(k2+2)x2+2kmx+(m2-1)=0………6分Δ=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0(*)…7分x1+x2=,x1x2= ………8分∵=3∴-x1=3x2∴消去x2,得3(x1+x2)2+4x1x2=0,∴3()2+4=0………9分整理得4k2m2+2m2-k2-2=0 m2=时,上式不成立;m2≠时,k2=,………10分∴k2=0,∴或把

4、k2=代入(*)得或∴或…………11分`````综上m的取值范围为或………………12分【山东省济南一中2012届高三上学期期末理】21.(本小题满分12分)已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是(1)求椭圆E的方程;(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。【答案】21.解:(1)根据条件可知椭圆的焦点在x轴,且故所求方程为即………………3分(2)假设存在点M符合题意,设AB:代

5、入得:………………4分则………6分……10分要使上式与K无关,则有,解得,存在点满足题意。12分【山东省济宁市金乡二中2012届高三11月月考理】23、(本小题满分分)[来源:学科网]已知曲线上的动点到点的距离比它到直线的距离大.(I)求曲线的方程;(II)过点且倾斜角为的直线与曲线交于两点,线段的垂直平分线交轴于点,证明:为定值,并求出此定值.【答案】23、解:(I)设动点,动点到点的距离比它到直线的距离多。即动点到点的距离等于它到直线的距离则`````两边平方化简可得:ABmPFBCD(II

6、)如图,作设,的横坐标分别为则解得同理解得记与的交点为故【山东省苍山县2012届高三上学期期末检测理】22.(本题满分14分)如图,斜率为1的直线过抛物线的焦点F,与抛物线交于两点A,B。(1)若

7、AB

8、=8,求抛物线的方程;(2)设P是抛物线上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)。【答案】22.解:设(1)由条件知直线.……1分由消去y,得…………2分`````由题意,判别式(不写,不扣分)由韦达定理,.………………

9、……………3分由抛物线的定义,从而所求抛物的方程为.…………………6分(2),易得.……………………………7分设。将代入直线PA的方程得.……………………………9分[来源:学科网ZXXK]同理直线PB的方程为.………………10分将代入直线PA,PB的方程得.……………………………12分【山东省淄博市第一中学2012届高三第一学期期中理】22、(满分14分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为,且的最大面积为(1)求椭圆的方程。(2)点的坐标为,过点且斜率为的直

10、线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。【答案】22.解:⑴由题意可知:a+c=+1,×2c×b=1,有∵a2=b2+c2[来源:学科网ZXXK]∴a2=2,b2=1,c2=1∴所求椭圆的方程为:⑵设直线l的方程为:y=k(x-1)A(x1,y1),B(x2,y2),M(,0)[来源:学科网ZXXK]`````联立则∵【山东省青州市2012届高三2月月考理】21.(本小题满分12分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为,且的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。