浅析关系数据库数据仓库与数据挖掘的关系

浅析关系数据库数据仓库与数据挖掘的关系

ID:23900549

大小:54.00 KB

页数:7页

时间:2018-11-11

浅析关系数据库数据仓库与数据挖掘的关系_第1页
浅析关系数据库数据仓库与数据挖掘的关系_第2页
浅析关系数据库数据仓库与数据挖掘的关系_第3页
浅析关系数据库数据仓库与数据挖掘的关系_第4页
浅析关系数据库数据仓库与数据挖掘的关系_第5页
资源描述:

《浅析关系数据库数据仓库与数据挖掘的关系》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、浅析关系数据库数据仓库与数据挖掘的关系马丽君(白城师范学院计算机科学学院,吉林白城137000)【摘要】关系数据库、数据仓库和数据挖掘是作为三种独立的信息技术出现的,是数据库研究、开发和应用最活跃的分支之一,通过对三种技术的内在联系性和互补性分析,从而更好的使用数据库技术处理各种信息需求,建立更加完善的数据库应用系统或新的决策系统。..关键词关系数据库;数据仓库;数据挖掘;关0引言关系数据库是20世纪70年代初提出来,经过数据库专家几十年的努力,理论和实践都取得了显著成果,标志着数据库技术的日益成熟。但它仍然难以实现对关系数据库中数据的分析,不能很好地支持决策,因此在80年代,

2、产生了数据仓库的思想,90年代,数据仓库的基本原理、架构形式和使用原则都已确定。主要技术包括对数据库中数据访问、网络、C/S结构和图形界面,一些大公司已经开始构建数据仓库。针对数据仓库中迅速增长的海量数据的收集、存放,用人力已经不能解决,那么数据仓库中有用的知识的提取就需要数据挖掘来实现。数据挖掘与统计学子领域“试探性数据分析”及人工智能子领域“知识发现”和机器学有关,是一门综合性的技术学科。了解关系数据库、数据仓库与数据挖掘三者之间的区别与联系,使之更好的使用这3种技术,处理各种信息需求是非常必要和重要的。1关系数据库、数据仓库和数据挖掘之间的关系1.1关系数据库和数据仓库之

3、间的联系与区别关系数据库是面向事务的设计,数据仓库是一个面向主题的设计;关系数据库存储在线事务数据,数据仓库通常存储历史数据,关系数据库的设计将尽量避免冗余,但数据仓库是倾向于引入冗余;关系数据库设计用于捕获数据,数据仓库设计用于分析数据。传统的关系数据库面向以事务处理为主的系统应用,所以它无法满足决策支持系统的分析要求。事务处理和分析处理有非常不同的性质,他们有不同的需求数据。1.2数据仓库与数据挖掘之间的联系与区别数据挖掘是基于数据仓库和多维数据库中的数据,找到数据的潜在模式进行预测,它可以对数据进行复杂处理。大多数情况下,数据挖掘是让数据从数据仓库到数据挖掘数据库中。从数

4、据仓库中直接得到进行数据挖掘的数据有许多优点,因为数据仓库中数据的清理和数据挖掘中几乎是相同的,如果数据在数据仓库中已被清除,数据挖掘中不再被清除,并且数据不一致也得到了解决。数据仓库是数据挖掘的先期步骤,通过数据仓库的构建,提高了数据挖掘的效率和能力,保证了数据挖掘中的数据的宽广性和完整性。1.3关系数据库与数据挖掘之间的联系与区别数据挖掘的数据源不一定是数据仓库。也可以是一个关系数据库中的数据,但要事先进行数据预处理,才能用于数据挖掘。数据预处理是数据挖掘的关键步骤,并且是数据挖掘过程中的主要工作部分。因此,数据仓库和数据挖掘没有必然的联系,有些人简单地认为,数据仓库是数据

5、挖掘的准备,这种理解是不全面的,也可以使用关系数据库中的数据作为数据挖掘的数据源。2三种技术的应用2.1应用价值2.1.1关系数据库关系数据库的主要价值体现在事务处理。关系数据库已经渗透到各行各业的日常事务,该事务管理离不开关系数据库的应用系统,这是对传统事务管理的一个重大突破,是社会甚至家庭不可或缺的工具,它对社会的应用价值是100%。2.1.2数据仓库数据仓库的主要价值体现在为决策分析提供数据源。一方面,在一个事务中,用户要求高效的访问系统和数据库,操作时间应该短。在一个决策分析中,决策问题的一些请求可能会导致系统的操作,解决这一问题的决策分析需要遍历大多数数据库中的数据,

6、这对一般日常事务处理系统是困难的,所以操作数据和决策分析数据应该分开。另一方面,决策数据需求问题。在决策分析时,由于不同的应用系统中,实体、字段存在数据类型、名称和格式的不符,需要在集成时进行转换,这个转换必须在决策之前完成;一些决策数据需要动态更新,需要经常进行汇总和总结,这些需求用事务处理系统解决比较繁琐。三是数据的操作模式问题。决策分析人员要以专业用户身份,使用各种工具以各种形式来操作数据,对数据操作的结果以商业智能的方式表达出来。事务处理系统不能满足这一要求,只有数据仓库系统能够满足数据挖掘技术对数据环境的要求,所以使用数据仓库中的数据省去了对数据预处理的步骤。2.1.

7、3数据挖掘面对日益激烈的市场竞争,客户对迅速应答各种业务问题的能力要求越来越高,对过量数据的及时处理要求越来越高,带来的挑战一方面大规模、复杂数据系统让用户感觉漫无头绪,无法开始;另一方面,这些大量数据背后隐藏很多有意义的有价值的决策信息。如计算机界都熟知的“啤酒与尿布”的故事,就是零售业巨头“沃尔玛”从大量销售数据中分析出来的规律:美国的男士在下班要去超市买婴儿尿布,同时他们还会买啤酒。“沃尔玛”就把这两种“毫不相干”的商品摆放在靠近的货架上,并且还摆放一些下洒小菜,使这些商品销量大增。所

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。