高中数学必修2知识点加例题加课后习题

高中数学必修2知识点加例题加课后习题

ID:23480918

大小:6.27 MB

页数:72页

时间:2018-11-08

高中数学必修2知识点加例题加课后习题_第1页
高中数学必修2知识点加例题加课后习题_第2页
高中数学必修2知识点加例题加课后习题_第3页
高中数学必修2知识点加例题加课后习题_第4页
高中数学必修2知识点加例题加课后习题_第5页
资源描述:

《高中数学必修2知识点加例题加课后习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、~高中数学必修二第一章空间几何体1.1空间几何体的结构1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的

2、几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。3、棱台··~定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点1、圆柱定义:以矩形的一边所在

3、的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。2、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体··~几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。球体定义:以半圆的直径所在直线为旋转轴,半圆面旋

4、转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。※空间几何体的结构特征:面(侧面、上底面、下底面)、棱、顶点、轴例1下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆··~D.圆锥所有的轴截面是全等的等腰三角形【解析】圆锥的母线长相长,设为l,若圆锥截面三角形顶角为,圆锥轴截面三角形顶角为,则0<≤.当≤90°时,截面面积S=≤.当90°<<180°时.截面面积

5、S≤,故选B.例2根据下列对几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的图形.【分析】要判断几何体的类型,首先应熟练掌握各类几何体的结构特征.图2图1【解析】(1)如图1,该几何体满足有两个面平行,其余六个面都是矩形,可使每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)如图2,等腰梯形两底边中点的连线将梯形平分为两个直角梯形,每个直角梯

6、形旋转180°形成半个圆台,故该几何体为圆台.点评:对于不规则的平面图形绕轴旋转问题,要对原平面图形作适当的分割,再根据圆柱、圆锥、圆台的结构特征进行判断.例3把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长是10cm,求圆锥的母线长.【分析】画出圆锥的轴截面,转化为平面问题求解.图4—1—8【解析】设圆锥的母线长为ycm,圆台上、下底面半径分别是xcm、4xcm.作圆锥的轴截面如图.在Rt△SOA中,O′A′∥OA,∴SA′∶SA=O′A′∶OA,即(y-10)∶y=x∶4x.∴

7、y=13.∴圆锥的母线长为13cm··~【点评】圆柱、圆锥、圆台可以看做是分别以矩形的一边、直角三角形的一直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体,其轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题一般要作出轴截面.例4已知球的外切圆台上、下底面的半径分别为r,R,求球的半径.【解析】圆台轴截面为等腰梯形,与球的大圆相切,由此得梯形腰长为R+r,梯形的高即球的直径为=2,所以,球的半径为.圆锥底面半径

8、为1cm,高为cm,其中有一个内接正方体,求这个内接正方体的棱长.EC1OD1=1FDCS【解析】锥的轴截面SEF,正方体对角面CDD1C1,如图所示.设正方体棱长x,则CC1=x,C1D1=x.作SO⊥EF于O,则SO=,OE=1,∵△ECC1~△EOS,∴=,即=.∴x=(cm),即内接正方体棱长为cm.课后练习一、选择题1.用一个平面去截一个四棱锥,截面形状不可能的是A.四边形B.三角形C.五边形D.六边形2.一个棱长为的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。