浙江大学数学系考试大纲

浙江大学数学系考试大纲

ID:23475772

大小:68.69 KB

页数:8页

时间:2018-11-08

浙江大学数学系考试大纲_第1页
浙江大学数学系考试大纲_第2页
浙江大学数学系考试大纲_第3页
浙江大学数学系考试大纲_第4页
浙江大学数学系考试大纲_第5页
资源描述:

《浙江大学数学系考试大纲》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、浙江大学理学部数学系2011硕士研究生入学考试大纲一、《数学分析》考试大纲本《数学分析》考试大纲适用于浙江大学理学部数学系各专业硕士研究生入学考试。数学分析是具有公共性质的重要的数学基础课程之一,主要内容包括:分析基础、一元微分学和积分学、级数、多元微分学和积分学等。制定本大纲的依据是①根据教育部颁发《数学分析》教学大纲的基本要求;②根据国内外一些优秀教材所讲到的基本内容和知识点。一、考试基本要求要求考生比较系统地掌握和理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法。要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识

2、分析问题和解决问题的能力。二、考试方法和考试时间数学分析考试采用闭卷笔试形式,试卷满分为150分,考试时间为150分钟。三、考试内容和考试要求(一)考试内容1.分析基础(1)实数概念、确界(2)函数概念(3)序列极限与函数极限(4)无穷大与无穷小(5)上极限与下极限(6)连续概念及基本性质,一致连续性(7)收敛原理2.一元微分学(1)导数概念及几何意义(2)求导公式求导法则(3)高阶导数(4)微分(5)微分中值定理(6)L’Hospital法则(7)Taylor公式(8)应用导数研究函数3.一元积分学(1)不定积分法与可积函数类(2)定积分的概念、性

3、质与计算(3)定积分的应用(4)广义积分4.级数(1)数项级数的敛散判别与性质(2)函数项级数与一致收敛性(3)幂级数(4)Fourier级数5.多元微分学(1)欧氏空间(2)多元函数的极限(3)多元连续函数(4)偏导数与微分(5)隐函数定理(6)Taylor公式(7)多元微分学的几何应用(8)多元函数的极值6.多元积分学(1)重积分的概念与性质(2)重积分的计算(3)二重、三重广义积分(4)含参变量的正常积分和广义积分(5)曲线积分与Green公式(6)曲面积分(7)Gauss公式、Stokes公式及线积分与路径无关(二)考试要求1.分析基础(1)

4、了解实数公理,理解上确界和下确界的意义。掌握绝对值不等式及平均值不等式。(2)熟练掌握函数概念(如定义域、值域、反函数等)。(3)掌握序列极限的意义、性质(特别,单调序列的极限存在性定理)和运算法则,熟练掌握求序列极限的方法。(4)掌握函数极限的意义、性质和运算法则(自变量趋于有限数和趋于无限两种情形),熟练掌握求函数极限的方法,了解广义极限和单侧极限的意义。(5)熟练掌握求序列极限和函数极限的常用方法(如初等变形、变量代换、两边夹法则等),掌握由递推公式给出的序列求极限的基本技巧,以及应用Stolz公式求序列极限的方法。(6)理解无穷大量和无穷小量

5、的意义,了解同阶和高(低)阶无穷大(小)量的意义。(7)了解上极限和下极限的意义和性质。(8)熟练掌握函数在一点及在一个区间上连续的概念,理解函数两类间断点的意义,掌握初等函数的连续性,理解区间套定理和介值定理。理解一致连续和不一致连续的概念。(9)掌握序列收敛的充分必要条件及函数极限(当自变量趋于有限数及趋于无穷两种情形)存在的充分必要条件。2.一元微分学(1)掌握导数的概念和几何意义,了解单侧导数的意义,解依据定义求函数在给定点的导数。(2)解应用求导公式和法则熟练计算函数导数(包括用参数式给出的函数的导数)、隐函数的导数以及函数的高阶导数。(3

6、)理解函数微分的概念和函数可微的充分必要条件,了解一阶微分的不变性,能利用微分作近似计算。(4)理解并掌握微分中值定理(Rolle定理,Lagrange定理和Cauchy中值定理),并能应用它们解决函数零点存在性及不等式证明等问题。(5)熟练掌握应用L’Hospital法则求函数极限的方法。(6)理解Taylor公式(Lagrange余项和Peano余项)的意义,并熟记五个基本公式(在x=0点的带有Peano余项的Taylor公式),能将给定函数在指定点展成Taylor级数,掌握应用Taylor公式解决不等式证明、求函数极限等问题的基本技巧。(7)熟

7、练掌握应用导数判断函数升降、凹凸性以及画出函数图像的方法,以及求一元函数极值和最值的方法。3.一元积分学(1)理解不定积分概念和基本性质,熟记基本积分表,理解并掌握换元法和分部积分法的意义和方法,解应用他们熟练计算不复杂的不定积分。(2)了解可积分函数类的意义及其积分法,熟练掌握有理函数、三角函数有理式及简单的根式的有理式的积分方法。(3)理解定积分的概念,掌握定积分的基本性质及函数在有限区间上可积的充分必要条件,熟练掌握定积分的计算方法。了解变限定积分的性质,掌握积分中值定理。(4)熟练应用定积分计算平面曲线弧长、平面图形面积、立体体积、旋转曲面表

8、面积,并解应用于求均匀平面图形重心坐标等简单物理、力学问题。(5)理解广义积分及其收敛、绝对收敛和发散的意义

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。