欢迎来到天天文库
浏览记录
ID:23457730
大小:153.25 KB
页数:5页
时间:2018-11-08
《实数知识点及对应练习》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、实数【无理数】1.定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。2.常见无理数的几种类型:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;(2)特殊结构的数(看似循环而实则不循环):如:2.01001000100001…(两个1之间依次多1个0)等。(3)无理数与有理数的和差结果都是无理数。如:2-是无理数(4)无理数乘或除以一个不为0的有理数结果是无理数。如2,(5)开方开不尽的数,如:等;应当要注意的是:带根号的数不一定是无理数,如:等;无理数也不一定带根
2、号,如:)3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。例:(1)下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。(填序号)(2)有五个数:0.125125…,0.1010010001…,-,,其中无理数有()个【算术平方根】:1.定义
3、:如果一个正数x的平方等于a,即,那么,这个正数x就叫做a的算术平方根,记为:“”,读作,“根号a”,其中,a称为被开方数。例如32=9,那么9的算术平方根是3,即。特别规地,0的算术平方根是0,即,负数没有算术平方根2.算术平方根具有双重非负性:(1)若有意义,则被开方数a是非负数。(2)算术平方根本身是非负数。3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两个互为相反数的值,表示为:。例:(1)下
4、列说法正确的是()A.1的立方根是;B.;(C)、的平方根是;(D)、0没有平方根;(2)下列各式正确的是()A、B、C、D、(3)的算术平方根是。(4)若有意义,则___________。(5)已知△ABC的三边分别是且满足,求c的取值范围。(6)(提高题)如果x、y分别是4-的整数部分和小数部分。求x-y的值.平方根:1.定义:如果一个数x的平方等于a,即,那么这个数x就叫做a的平方根;,我们称x是a的平方(也叫二次方根),记做:2.性质:(1)一个正数有两个平方根,且它们互为相反数;(2)0只有一个平方根,它
5、是0本身;(3)负数没有平方根例(1)若的平方根是±2,则x= ;的平方根是(2)当x时,有意义。(3)一个正数的平方根分别是m和m-4,则m的值是多少?这个正数是多少?3.(1)(2)中,a可以取任意实数。如例:1.求下列各式的值(1)(2)(3)2.已知,那么a的取值范围是 。3.已知2<x<3,化简 。【立方根】1.定义:一般地,如果以个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根)记为,读作,3次根号a。如23=8,则2是8的立方根,0的立方根是0。2.性质:正数的立方根的正数
6、;0的立方根是0;负数的立方根是负数。立方根是它本身的数有0,1,-1.例:(1)64的立方根是 (2)若,则b等于 (3)下列说法中:①都是27的立方根,②,③的立方根是2,④。其中正确的有()A、1个B、2个C、3个D、4个比较两个数的大小:方法一:估算法。如3<<4方法二:作差法。如a>b则a-b>0.方法三:乘方法.如比较的大小。例:比较下列两数的大小(1)(2)【实数】定义:(1)有理数与无理数统称为实数。在实数中,没有最大的实数,也没有最小的实数;绝对值最小的实数
7、是0,最大的负整数是-1。(2)实数也可以分为正实数、0负实数。实数的性质:实数a的相反数是-a;实数a的倒数是(a≠0);实数a的绝对值
8、a
9、=,它的几何意义是:在数轴上的点到原点的距离。实数的大小比较法则:实数的大小比较的法则跟有理数的大小比较法则相同:即正数大于0,0大于负数;正数大于负数;两个正数,绝对值大的就大,两个负数,绝对值大的反而小。(在数轴上,右边的数总是大于左边的数)。对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小。实数的运算:在实数范围内,可以进行加、减、乘、除、乘方、开方六
10、种运算。运算法则和运算顺序与有理数的一样实数与数轴的关系:每个实数与数轴上的点是一一对应的(1)每个实数可以以用数轴上的一个点来表示。(2)数轴上的每个点都表示已个实数。例:(1)下列说法正确的是();A、任何有理数均可用分数形式表示;B、数轴上的点与有理数一一对应;C、1和2之间的无理数只有;D、不带根号的数都是有理数。(2)a,b在数轴上的位置如图所示,
此文档下载收益归作者所有